

ОСЕВОЙ ИНСТРУМЕНТ

Концевые фрезы

Оглавление

О компании	3
Расшифровка обозначений	5
Концевые фрезы	6
Фрезы универсального применения	8
Фрезы для обработки нержавеющих сталей и жаропрочных сплавов	55
Фрезы для обработки цветных сплавов	63
Фрезы для обработки закалённой стали	70
Фасонные фрезы	82
Техническая информация	86

Российский производитель высококачественного металлорежущего инструмента

Почему мы?

Собственный центр инженерно-технической поддержки

Мы рассчитаем экономическую эффективность внедрения инструмента за вас

Оперативность

Наше производство находится в Москве, поэтому мы оперативно отправим инструмент из наличия на складе или оперативно разработаем специальную геометрию под ваши задачи

Сертифицированная продукция

Качество производимого инструмента подтверждается соответствием международного стандарта ISO 9001-2015

Баланс цены и качества

Гибкая система скидок для постоянных клиентов и качество инструмента на уровне мировых производителей

Постоянное развитие

Нас выбирают сотни компаний в России и за рубежом. Мы работаем при поддержке ФРП и Фонда Сколково. Наш ассортимент постоянно пополняется



12 лет на рынке

5 представительств в городах России

9 стран мира: география поставок

61 сотрудник, среди которых 10 инженеров по внедрению

1500 M производственная площадь

1500 м

площадь на развитие участка производства твердосплавного инструмента

2000 наименований в наличии

Расшифровка обозначений

Цилиндрический хвостик

DIN 6535-HA

Weldon хвостик DIN 6535-НВ

Концевые фрезы

Серия	Форма	Стр.	Диапазон диаметров	Кромка	Число зубьев	Угол спирали	P	Обрабо М	атывае	мый ма N	териал	Н
G1		08	4-20	90°	Z = 2	30°	•	•	•		0	
Gi		06	4-20		2-2	30					J	
G5		09	4-20	90°	Z = 2	35°	•	•	•		0	
G2		10	4-20	45°	Z = 2	30°	•	•	•		0	
G6		11	4-20	45°	Z = 2	35°	•	•	•		0	
G20		12	4-20	R	Z = 2	30°	•	•	•		0	
G21		15	4-20	R	Z = 2	35°	•	•	•		0	
G3		18	3-20	90°	Z = 4	30°	•	•	•		0	
G7		19	4-20	90°	Z = 4	35°	•	•	•		0	
G4		20	4-20	45°	Z = 4	30°	•	•	•		0	
G8		21	4-20	45°	Z = 4	35°	•	•	•		0	
G9		22	4-20	45°	Z = 4	35°/38°	•	•	•		0	
G10		23	4-20	45°	Z = 4	36°/38°	•	•	•		0	
G22		24	4-20	R	Z = 4	30°	•	•	•		0	
G23		27	4-20	R	Z = 4	35°	•	•	•		0	
G11		30	4-20	45°	Z = 4	30°	•	•	•		0	
G12		31	4-20	R	Z = 2	30°	•	•	•		0	
G13		32	4-20	R	Z = 4	30°	•	•	•		0	

• - Основное применение

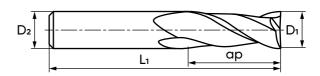
О - Возможное применение

Концевые фрезы

Серия	Форма	Стр.	Диапазон диаметров	Кромка	Число зубьев	Угол спирали	P	Обрабо М	атывае	мый ма N	териал	Н
2 4 4 4 4				90°		109/109						
M11		55	4-16		Z = 4	40°/42°	0	•	0		•	
M13		55	4-16	45°	Z = 4	48°	0	•	0		•	
M31		56	4-16	R	Z = 4	30°	0	•	0		•	
N92		63	4-20	45°	Z = 2	45°				•	0	
N93		64	4-20	45°	Z = 3	45°				•	0	
N94		65	4-20	45°	Z = 4	45°				•	0	
N95		66	4-20	R	Z = 2	30°				•	0	
H501		70	4-16	R	Z = 4-6	45°	0					•
H502		71	2-20	R	Z = 4-6	45°	0					•
H503		72	2-20	R	Z = 4-6	45°	0					•
H508		73	6-16	90°	Z = 6-16	30°						•
H542		74	3-20	R	Z = 6	45°	0		0			•
H572		75	2-20	\mathbb{R}	Z = 4	30°	0					•
G40		82	6-12	60°	Z = 4	0°	•	•	•		0	
G41		82	4-20	90°	Z = 4	0°	•	•	•		0	
G42		83	6-12	[120°]	Z = 4	0°	•	•	•		0	
G43		84	6-20	R	Z = 4	0°	•	•	•		0	

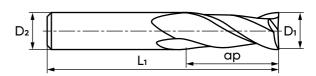
^{• -} Основное применение О - Возможное применение

Серия G1



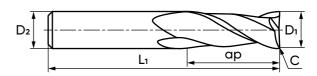
Артикул	D ₁ , мм	ар, мм	L1, MM	D2, мм	Z
G1F04050-2C04	4	11	50	4	2
G1F04057-2C04	4	11	57	4	2
G1F04075-2C04	4	11	75	4	2
G1F04075-2C04L	4	30	75	4	2
G1F06057-2C06	6	13	57	6	2
G1F06050-2C06	6	16	50	6	2
G1F06075-2C06	6	30	75	6	2
G1F08063-2C08	8	19	63	8	2
G1F080100-2C08	8	40	100	8	2
G1F100100-2C10	10	22	100	10	2
G1F10072-2C10	10	22	72	10	2
G1F10075-2C10	10	25	75	10	2
G1F12073-2C12	12	12	73	12	2
G1F12083-2C12	12	26	83	12	2
G1F12075-2C12	12	30	75	12	2
G1F120100-2C12	12	45	100	12	2
G1F16092-2C16	16	32	92	16	2
G1F160100-2C16	16	36	100	16	2
G1F200104-2C20	20	38	104	20	2

Серия G5



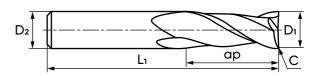
Артикул	D1, мм	ар, мм	L1, MM	D2, мм	Z
G5F04050-2C04	4	11	50	4	2
G5F04057-2C04	4	11	57	4	2
G5F04075-2C04	4	11	75	4	2
G5F04075-2C04L	4	30	75	4	2
G5F06057-2C06	6	13	57	6	2
G5F06050-2C06	6	16	50	6	2
G5F06075-2C06	6	30	75	6	2
G5F08063-2C08	8	19	63	8	2
G5F080100-2C08	8	40	100	8	2
G5F100100-2C10	10	22	100	10	2
G5F10072-2C10	10	22	72	10	2
G5F10075-2C10	10	25	75	10	2
G5F12073-2C12	12	12	73	12	2
G5F12083-2C12	12	26	83	12	2
G5F12075-2C12	12	30	75	12	2
G5F120100-2C12	12	45	100	12	2
G5F14083-2C14	14	30	83	14	2
G5F16092-2C16	16	32	92	16	2
G5F160100-2C16	16	36	100	16	2
G5F200104-2C20	20	38	104	20	2

Серия G2



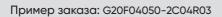
Артикул	D ₁ , мм	ар, мм	L1, MM	D ₂ , мм	Z	Cx45°
G2F04050-2C04	4	11	50	4	2	0,13
G2F04057-2C04	4	11	57	4	2	0,13
G2F04075-2C04	4	11	75	4	2	0,13
G2F04075-2C04L	4	30	75	4	2	0,13
G2F06057-2C06	6	13	57	6	2	0,2
G2F06050-2C06	6	16	50	6	2	0,2
G2F06075-2C06	6	30	75	6	2	0,2
G2F08063-2C08	8	19	63	8	2	0,2
G2F080100-2C08	8	40	100	8	2	0,2
G2F100100-2C10	10	22	100	10	2	0,25
G2F10072-2C10	10	22	72	10	2	0,25
G2F10075-2C10	10	25	75	10	2	0,25
G2F12073-2C12	12	12	73	12	2	0,3
G2F12083-2C12	12	26	83	12	2	0,3
G2F12075-2C12	12	30	75	12	2	0,3
G2F120100-2C12	12	45	100	12	2	0,3
G2F16092-2C16	16	32	92	16	2	0,4
G2F160100-2C16	16	36	100	16	2	0,4
G2F200104-2C20	20	38	104	20	2	0,5

Серия G6



Артикул	D ₁ , мм	ар, мм	L1, MM	D ₂ , мм	Z	Cx45°
G6F04050-2C04	4	11	50	4	2	0,13
G6F04057-2C04	4	11	57	4	2	0,13
G6F04075-2C04	4	11	75	4	2	0,13
G6F04075-2C04L	4	30	75	4	2	0,13
G6F06057-2C06	6	13	57	6	2	0,2
G6F06050-2C06	6	16	50	6	2	0,2
G6F06075-2C06	6	30	75	6	2	0,2
G6F08063-2C08	8	19	63	8	2	0,2
G6F080100-2C08	8	40	100	8	2	0,2
G6F100100-2C10	10	22	100	10	2	0,25
G6F10072-2C10	10	22	72	10	2	0,25
G6F10075-2C10	10	25	75	10	2	0,25
G6F100100-2C10L	10	50	100	10	2	0,25
G6F12073-2C12	12	12	73	12	2	0,3
G6F12083-2C12	12	26	83	12	2	0,3
G6F12075-2C12	12	30	75	12	2	0,3
G6F120100-2C12	12	45	100	12	2	0,3
G6F14083-2C14	14	30	83	14	2	0,3
G6F16092-2C16	16	32	92	16	2	0,4
G6F160100-2C16	16	36	100	16	2	0,4
G6F200104-2C20	20	38	104	20	2	0,5

Серия G20

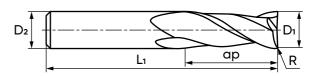


D_2		D ₁
	L ₁ ap	R

Артикул	D ₁ , мм	ар, мм	L1, мм	D ₂ , MM	Z	R
G20F04050-2C04R03	4	11	50	4	2	0,3
G20F04050-2C04R05	4	11	50	4	2	0,5
G20F04050-2C04R1	4	11	50	4	2	1
G20F04057-2C04R03	4	11	57	4	2	0,3
G20F04057-2C04R05	4	11	57	4	2	0,5
G20F04057-2C04R1	4	11	57	4	2	1
G20F04075-2C04R03	4	11	75	4	2	0,3
G20F04075-2C04R05	4	11	75	4	2	0,5
G20F04075-2C04R1	4	11	75	4	2	1
G20F04075-2C04R1L	4	30	75	4	2	1
G20F06057-2C06R05	6	13	57	6	2	0,5
G20F06057-2C06R1	6	13	57	6	2	1
G20F06057-2C06R15	6	13	57	6	2	1,5
G20F06057-2C06R2	6	13	57	6	2	2
G20F06050-2C06R05	6	16	50	6	2	0,5
G20F06050-2C06R1	6	16	50	6	2	1
G20F06050-2C06R15	6	16	50	6	2	1,5
G20F06050-2C06R2	6	16	50	6	2	2
G20F06075-2C06R05	6	30	75	6	2	0,5
G20F06075-2C06R1	6	30	75	6	2	1
G20F06075-2C06R1.5	6	30	75	6	2	1,5
G20F06075-2C06R2	6	30	75	6	2	2
G20F08063-2C08R05	8	19	63	8	2	0,5
G20F08063-2C08R1	8	19	63	8	2	1
G20F08063-2C08R15	8	19	63	8	2	1,5
G20F08063-2C8R2	8	19	63	8	2	2
G20F080100-2C08R05	8	40	100	8	2	0,5
G20F080100-2C08R1	8	40	100	8	2	1
G20F080100-2C08R15	8	40	100	8	2	1,5

Продолжение на следующей странице

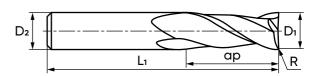
Серия G20



Артикул	D1, мм	ар, мм	Lı, mm	D2, мм	Z	R
Дрикул	<i>D1,</i> PIPI	ар, пп	L1, 14114	D2, 11111		I N
G20F080100-2C08R2	8	40	100	8	2	2
G20F100100-2C10R05	10	22	100	10	2	0,5
G20F100100-2C10R1	10	22	100	10	2	1
G20F100100-2C10R15	10	22	100	10	2	1,5
G20F100100-2C10R2	10	22	100	10	2	2
G20F100100-2C10R3	10	22	100	10	2	3
G20F10072-2C10R05	10	22	72	10	2	0,5
G20F10072-2C10R1	10	22	72	10	2	1
G20F10072-2C10R15	10	22	72	10	2	1,5
G20F10072-2C10R2	10	22	72	10	2	2
G20F10072-2C10R3	10	22	72	10	2	3
G20F10075-2C10R05	10	25	75	10	2	0,5
G20F10075-2C10R1	10	25	75	10	2	1
G20F10075-2C10R15	10	25	75	10	2	1,5
G20F10075-2C10R2	10	25	75	10	2	2
G20F10075-2C10R3	10	25	75	10	2	3
G20F12073-2C12R05	12	12	73	12	2	0,5
G20F12073-2C12R1	12	12	73	12	2	1
G20F12073-2C12R15	12	12	73	12	2	1,5
G20F12073-2C12R2	12	12	73	12	2	2
G20F12073-2C12R3	12	12	73	12	2	3
G20F12083-2C12R05	12	26	83	12	2	0,5
G20F12083-2C12R1	12	26	83	12	2	1
G20F12083-2C12R15	12	26	83	12	2	1,5
G20F12083-2C12R2	12	26	83	12	2	2
G20F12083-2C12R3	12	26	83	12	2	3
G20F12075-2C12R05	12	30	75	12	2	0,5
G20F12075-2C12R1	12	30	75	12	2	1
G20F12075-2C12R15	12	30	75	12	2	1,5

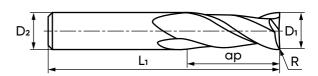
Продолжение на следующей странице

Серия G20



Артикул	D1, мм	ар, мм	L1, MM	D ₂ , мм	Z	R
G20F12075-2C12R2	12	30	75	12	2	2
G20F12075-2C12R3	12	30	75	12	2	3
G20F120100-2C12R05	12	45	100	12	2	0,5
G20F120100-2C12R1	12	45	100	12	2	1
G20F120100-2C12R15	12	45	100	12	2	1,5
G20F120100-2C12R2	12	45	100	12	2	2
G20F120100-2C12R25	12	45	100	12	2	2,5
G20F16092-2C16R05	16	32	92	16	2	0,5
G20F16092-2C16R1	16	32	92	16	2	1
G20F16092-2C16R15	16	32	92	16	2	1,5
G20F16092-2C16R2	16	32	92	16	2	2
G20F16092-2C16R3	16	32	92	16	2	3
G20F160100-2C16R05	16	36	100	16	2	0,5
G20F160100-2C16R1	16	36	100	16	2	1
G20F160100-2C16R15	16	36	100	16	2	1,5
G20F160100-2C16R2	16	36	100	16	2	2
G20F160100-2C16R3	16	36	100	16	2	3
G20F200104-2C20R1	20	38	104	20	2	1
G20F200104-2C20R2	20	38	104	20	2	2
G20F200104-2C20R3	20	38	104	20	2	3

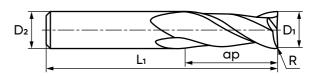
Серия G21



Артикул	D1, мм	ар, мм	L1, мм	D ₂ , мм	Z	R
G21F04050-2C04R03	4	11	50	4	2	0,3
G21F04050-2C04R05	4	11	50	4	2	0,5
G21F04050-2C04R1	4	11	50	4	2	1
G21F04057-2C04R03	4	11	57	4	2	0,3
G21F04057-2C04R05	4	11	57	4	2	0,5
G21F04057-2C04R1	4	11	57	4	2	1
G21F04075-2C04R03	4	11	75	4	2	0,3
G21F04075-2C04R05	4	11	75	4	2	0,5
G21F04075-2C04R1	4	11	75	4	2	1
G21F04075-2C04R1L	4	30	75	4	2	1
G21F06057-2C06R05	6	13	57	6	2	0,5
G21F06057-2C06R1	6	13	57	6	2	1
G21F06057-2C0615	6	13	57	6	2	1,5
G21F06057-2C06R2	6	13	57	6	2	2
G21F06050-2C06R05	6	16	50	6	2	0,5
G21F06050-2C06R1	6	16	50	6	2	1
G21F06050-2C06R15	6	16	50	6	2	1,5
G21F06050-2C06R2	6	16	50	6	2	2
G21F06075-2C06R05	6	30	75	6	2	0,5
G21F06075-2C06R1	6	30	75	6	2	1
G21F06075-2C06R15	6	30	75	6	2	1,5
G21F06075-2C06R2	6	30	75	6	2	2
G21F08063-2C08R05	8	19	63	8	2	0,5
G21F08063-2C08R1	8	19	63	8	2	1
G21F08063-2C08R1.5	8	19	63	8	2	1,5
G21F08063-2C08R2	8	19	63	8	2	2
G21F080100-2C08R05	8	40	100	8	2	0,5
G21F080100-2C08R1	8	40	100	8	2	1
G21F080100-2C08R15	8	40	100	8	2	1,5

Продолжение на следующей странице

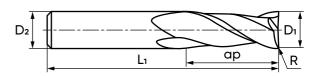
Серия G21



Артикул	D1, мм	ар, мм	L ₁ , MM	D2, мм	Z	R
7 (p. 17 m. yz.)	2.,,	ωρ,		22,		
G21F080100-2C08R2	8	40	100	8	2	2
G21F100100-2C10R05	10	22	100	10	2	0,5
G21F100100-2C10R1	10	22	100	10	2	1
G21F100100-2C10R15	10	22	100	10	2	1,5
G21F100100-2C10R2	10	22	100	10	2	2
G21F100100-2C10R3	10	22	100	10	2	3
G21F10072-2C10R05	10	22	72	10	2	0,5
G21F10072-2C10R1	10	22	72	10	2	1
G21F10072-2C10R15	10	22	72	10	2	1,5
G21F10072-2C10R2	10	22	72	10	2	2
G21F10072-2C10R3	10	22	72	10	2	3
G21F10075-2C10R05	10	25	75	10	2	0,5
G21F10075-2C10R1	10	25	75	10	2	1
G21F10075-2C10R15	10	25	75	10	2	1,5
G21F10075-2C10R2	10	25	75	10	2	2
G21F10075-2C10R3	10	25	75	10	2	3
G21F12073-2C12R05	12	12	73	12	2	0,5
G21F12073-2C12R1	12	12	73	12	2	1
G21F12073-2C12R15	12	12	73	12	2	1,5
G21F12073-2C12R2	12	12	73	12	2	2
G21F12073-2C12R3	12	12	73	12	2	3
G21F12083-2C12R05	12	26	83	12	2	0,5
G21F12083-2C12R1	12	26	83	12	2	1
G21F12083-2C12R15	12	26	83	12	2	1,5
G21F12083-2C12R2	12	26	83	12	2	2
G21F12083-2C12R3	12	26	83	12	2	3
G21F12075-2C12R05	12	30	75	12	2	0,5
G21F12075-2C12R1	12	30	75	12	2	1
G21F12075-2C12R15	12	30	75	12	2	1,5

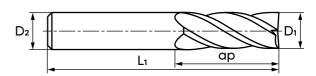
Продолжение на следующей странице

Серия G21



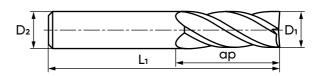
Артикул	D1, мм	ар, мм	L1, MM	D2, мм	Z	R
G21F12075-2C12R2	12	30	75	12	2	2
G21F12075-2C12R3	12	30	75	12	2	3
G21F120100-2C12R05	12	45	100	12	2	0,5
G21F120100-2C12R1	12	45	100	12	2	1
G21F120100-2C12R15	12	45	100	12	2	1,5
G21F120100-2C12R2	12	45	100	12	2	2
G21F120100-2C12R25	12	45	100	12	2	2,5
G21F16092-2C16R05	16	32	92	16	2	0,5
G21F16092-2C16R1	16	32	92	16	2	1
G21F16092-2C16R15	16	32	92	16	2	1,5
G21F16092-2C16R2	16	32	92	16	2	2
G21F16092-2C16R3	16	32	92	16	2	3
G21F160100-2C16R05	16	36	100	16	2	0,5
G21F160100-2C16R1	16	36	100	16	2	1
G21F160100-2C16R15	16	36	100	16	2	1,5
G21F160100-2C16R2	16	36	100	16	2	2
G21F160100-2C16R3	16	36	100	16	2	3
G21F200104-2C20R1	20	38	104	20	2	1
G21F200104-2C20R2	20	38	104	20	2	2
G21F200104-2C20R3	20	38	104	20	2	3

Серия G3



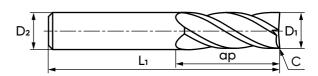
Артикул	D1, мм	ар, мм	L1, MM	D2, мм	Z
G3F03057-4C03	3	13	57	3	4
G3F04050-4C04	4	11	50	4	4
G3F04057-4C04	4	11	57	4	4
G3F04075-4C04	4	11	75	4	4
G3F04075-4C04L	4	30	75	4	4
G3F05057-4C05	5	13	57	5	4
G3F06057-4C06	6	13	57	6	4
G3F06050-4C06	6	16	50	6	4
G3F06075-4C06	6	30	75	6	4
G3F08063-4C08	8	19	63	8	4
G3F080100-4C08	8	40	100	8	4
G3F100100-4C10	10	22	100	10	4
G3F10072-4C10	10	22	72	10	4
G3F10075-4C10	10	25	75	10	4
G3F12073-4C12	12	12	73	12	4
G3F12083-4C12	12	26	83	12	4
G3F12075-4C12	12	30	75	12	4
G3F120100-4C12	12	45	100	12	4
G3F16092-4C16	16	32	92	16	4
G3F160100-4C16	16	36	100	16	4
G3F200104-4C20	20	38	104	20	4
G3F200110-4C20	20	55	110	20	4

Серия G7



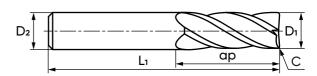
Артикул	D1, мм	ар, мм	L1, MM	D2, MM	Z
G7F04050-4C04	4	11	50	4	4
G7F04057-4C04	4	11	57	4	4
G7F04075-4C04	4	11	75	4	4
G7F04075-4C04L	4	30	75	4	4
G7F06057-4C06	6	13	57	6	4
G7F06050-4C06	6	16	50	6	4
G7F06075-4C06	6	30	75	6	4
G7F08063-4C08	8	19	63	8	4
G7F080100-4C08	8	40	100	8	4
G7F100100-4C10	10	22	100	10	4
G7F10072-4C10	10	22	72	10	4
G7F10075-4C10	10	25	75	10	4
G7F12073-4C12	12	12	73	12	4
G7F12083-4C12	12	26	83	12	4
G7F12075-4C12	12	30	75	12	4
G7F120100-4C12	12	45	100	12	4
G7F14083-4C14	14	30	83	14	4
G7F16092-4C16	16	32	92	16	4
G7F160100-4C16	16	36	100	16	4
G7F200104-4C20	20	38	104	20	4

Серия G4



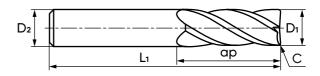
Артикул	D ₁ , мм	ар, мм	L1, MM	D ₂ , мм	Z	Cx45°
G4F04050-4C04	4	11	50	4	4	0,13
G4F04057-4C04	4	11	57	4	4	0,13
G4F04075-4C04	4	11	75	4	4	0,13
G4F04075-4C04L	4	30	75	4	4	0,13
G4F06057-4C06	6	13	57	6	4	0,2
G4F06050-4C06	6	16	50	6	4	0,2
G4F06075-4C06	6	30	75	6	4	0,2
G4F08063-4C08	8	19	63	8	4	0,2
G4F080100-4C08	8	40	100	8	4	0,2
G4F100100-4C10	10	22	100	10	4	0,25
G4F10072-4C10	10	22	72	10	4	0,25
G4F10075-4C10	10	25	75	10	4	0,25
G4F12073-4C12	12	12	73	12	4	0,3
G4F12083-4C12	12	26	83	12	4	0,3
G4F12075-4C12	12	30	75	12	4	0,3
G4F120100-4C12	12	45	100	12	4	0,3
G4F16092-4C16	16	32	92	16	4	0,4
G4F160100-4C17	16	36	100	16	4	0,4
G4F200104-4C20	20	38	104	20	4	0,5

Серия G8



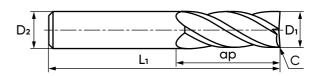
Артикул	D ₁ , мм	ар, мм	L1, MM	D2, мм	Z	Cx45°
G8F04050-4C04	4	11	50	4	4	0,13
G8F04057-4C04	4	11	57	4	4	0,13
G8F04075-4C04	4	11	75	4	4	0,13
G8F04075-4C04L	4	30	75	4	4	0,13
G8F05057-4C05	5	11	57	5	4	0,2
G8F05050-4C05	5	13	50	5	4	0,2
G8F06057-4C06	6	13	57	6	4	0,2
G8F06050-4C06	6	16	50	6	4	0,2
G8F06075-4C06	6	30	75	6	4	0,2
G8F08063-4C08	8	19	63	8	4	0,2
G8F080100-4C08	8	40	100	8	4	0,2
G8F100100-4C10	10	22	100	10	4	0,25
G8F10072-4C10	10	22	72	10	4	0,25
G8F10075-4C10	10	25	75	10	4	0,25
G8F100100-4C10L	10	40	100	10	4	0,25
G8F12073-4C12	12	12	73	12	4	0,3
G8F12083-4C12	12	26	83	12	4	0,3
G8F12075-4C12	12	30	75	12	4	0,3
G8F120100-4C12	12	45	100	12	4	0,3
G8F14083-4C14	14	30	83	14	4	0,3
G8F160100-4C16	16	32	100	16	4	0,4
G8F16092-4C16	16	32	92	16	4	0,4
G8F160100-4C16L	16	36	100	16	4	0,4
G8F200104-4C20	20	38	104	20	4	0,5

Серия G9



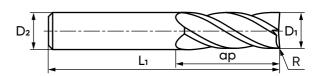
Артикул	D1, мм	ар, мм	L ₁ , MM	D ₂ , MM	Z	Cx45°
G9F04057-4C04	4	11	57	4	4	0,08
G9F06057-4C06	6	13	57	6	4	0,12
G9F08063-4C08	8	19	63	8	4	0,16
G9F10072-4C10	10	22	72	10	4	0,2
G9F10075-4C10	10	25	75	10	4	0,2
G9F12083-4C12	12	26	83	12	4	0,24
G9F1092-4C16	16	32	92	16	4	0,32
G9F200104-4C20	20	38	104	20	4	0,4

Серия G10



Артикул	D1, мм	ар, мм	L ₁ , MM	D ₂ , мм	Z	Cx45°
G10F04057-4C04	4	11	57	4	4	0,15
G10F06057-4C06	6	13	57	6	4	0,2
G10F08063-4C08	8	19	63	8	4	0,25
G10F10072-4C10	10	22	72	10	4	0,3
G10F12083-4C12	12	26	83	12	4	0,35
G10F16092-4C16	16	32	92	16	4	0,5
G10F200104-4C20	20	38	104	20	4	0,6

Серия G22

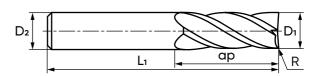




Артикул	D1, мм	ар, мм	L ₁ , мм	D ₂ , мм	Z	R
G22F04050-4C04R03	4	11	50	4	4	0,3
G22F04050-4C04R05	4	11	50	4	4	0,5
G22F04050-4C04R1	4	11	50	4	4	1
G22F04057-4C04R03	4	11	57	4	4	0,3
G22F04057-4C04R05	4	11	57	4	4	0,5
G22F04057-4C04R1	4	11	57	4	4	1
G22F04075-4C04R03	4	11	75	4	4	0,3
G22F04075-4C04R05	4	11	75	4	4	0,5
G22F04075-4C04R1	4	11	75	4	4	1
G22F04075-4C04R1L	4	30	75	4	4	1
G22F06057-4C06R05	6	13	57	6	4	0,5
G22F06057-4C06R1	6	13	57	6	4	1
G22F06057-4C06R15	6	13	57	6	4	1,5
G22F06057-4C06R2	6	13	57	6	4	2
G22F06050-4C06R05	6	16	50	6	4	0,5
G22F06050-4C06R1	6	16	50	6	4	1
G22F06050-4C06R15	6	16	50	6	4	1,5
G22F06050-4C06R2	6	16	50	6	4	2
G22F06075-4C06R05	6	30	75	6	4	0,5
G22F06075-4C06R1	6	30	75	6	4	1
G22F06075-4C06R15	6	30	75	6	4	1,5
G22F06075-4C06R2	6	30	75	6	4	2
G22F08063-4C08R05	8	19	63	8	4	0,5
G22F08063-4C08R1	8	19	63	8	4	1
G22F08063-4C08R15	8	19	63	8	4	1,5
G22F08063-4C08R2	8	19	63	8	4	2
G22F080100-4C08R05	8	40	100	8	4	0,5
G22F080100-4C08R1	8	40	100	8	4	1
G22F080100-4C08R15	8	40	100	8	4	1,5

Продолжение на следующей странице

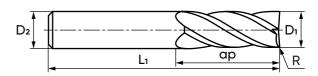
Серия G22



Артикул	D1, мм	ар, мм	L1, MM	D ₂ , мм	Z	R
G22F080100-4C08R2	8	40	100	8	4	2
G22F100100-4C10R05	10	22	100	10	4	0,5
G22F100100-4C10R1	10	22	100	10	4	1
G22F100100-4C10R15	10	22	100	10	4	1,5
G22F100100-4C10R2	10	22	100	10	4	2
G22F100100-4C10R3	10	22	100	10	4	3
G22F10072-4C10R05	10	22	72	10	4	0,5
G22F10072-4C10R1	10	22	72	10	4	1
G22F10072-4C10R15	10	22	72	10	4	1,5
G22F10072-4C10R2	10	22	72	10	4	2
G22F10072-4C10R3	10	22	72	10	4	3
G22F10075-4C10R05	10	25	75	10	4	0,5
G22F10075-4C10R1	10	25	75	10	4	1
G22F10075-4C10R15	10	25	75	10	4	1,5
G22F10075-4C10R2	10	25	75	10	4	2
G22F10075-4C10R3	10	25	75	10	4	3
G22F12073-4C12R05	12	12	73	12	4	0,5
G22F12073-4C12R1	12	12	73	12	4	1
G22F12073-4C12R15	12	12	73	12	4	1,5
G22F12073-4C12R2	12	12	73	12	4	2
G22F12073-4C12R3	12	12	73	12	4	3
G22F12083-4C12R05	12	26	83	12	4	0,5
G22F12083-4C12R1	12	26	83	12	4	1
G22F12083-4C12R15	12	26	83	12	4	1,5
G22F12083-4C12R2	12	26	83	12	4	2
G22F12083-4C12R3	12	26	83	12	4	3
G22F12075-4C12R05	12	30	75	12	4	0,5
G22F12075-4C12R1	12	30	75	12	4	1
G22F12075-4C12R15	12	30	75	12	4	1,5

Продолжение на следующей странице

Серия G22



Артикул	D1, мм	ар, мм	L ₁ , MM	D ₂ , MM	Z	R
G22F12075-4C12R2	12	30	75	12	4	2
G22F12075-4C12R3	12	30	75	12	4	3
G22F120100-4C12R05	12	45	100	12	4	0,5
G22F120100-4C12R1	12	45	100	12	4	1
G22F120100-4C12R15	12	45	100	12	4	1,5
G22F120100-4C12R2	12	45	100	12	4	2
G22F120100-4C12R25	12	45	100	12	4	2,5
G22F16092-4C16R05	16	32	92	16	4	0,5
G22F16092-4C16R1	16	32	92	16	4	1
G22F16092-4C16R15	16	32	92	16	4	1,5
G22F16092-4C16R2	16	32	92	16	4	2
G22F16092-4C16R3	16	32	92	16	4	3
G22F160100-4C16R05	16	36	100	16	4	0,5
G22F160100-4C16R1	16	36	100	16	4	1
G22F160100-4C16R15	16	36	100	16	4	1,5
G22F160100-4C16R2	16	36	100	16	4	2
G22F160100-4C16R3	16	36	100	16	4	3
G22F200104-4C20R1	20	38	104	20	4	1
G22F200104-4C20R2	20	38	104	20	4	2
G22F200104-4C20R3	20	38	104	20	4	3

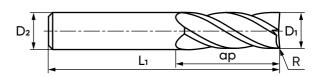
Серия G23

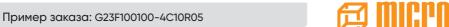


Артикул	D1, мм	ар, мм	L1, MM	D ₂ , мм	Z	R
G23F04050-4C04R03	4	11	50	4	4	0,3
G23F04050-4C04R05	4	11	50	4	4	0,5
G23F04050-4C04R1	4	11	50	4	4	1
G23F04057-4C04R03	4	11	57	4	4	0,3
G23F04057-4C04R05	4	11	57	4	4	0,5
G23F04057-4C04R1	4	11	57	4	4	1
G23F04075-4C04R03	4	11	75	4	4	0,3
G23F04075-4C04R05	4	11	75	4	4	0,5
G23F04075-4C04R1	4	11	75	4	4	1
G23F06057-4C06R05	6	13	57	6	4	0,5
G23F06057-4C06R1	6	13	57	6	4	1
G23F06057-4C06R15	6	13	57	6	4	1,5
G23F06057-4C06R2	6	13	57	6	4	2
G23F06050-4C06R05	6	16	50	6	4	0,5
G23F06050-4C06R1	6	16	50	6	4	1
G23F06050-4C06R1.5	6	16	50	6	4	1,5
G23F06050-4C06R2	6	16	50	6	4	2
G23F06075-4C06R05	6	30	75	6	4	0,5
G23F06075-4C06R1	6	30	75	6	4	1
G23F06075-4C06R15	6	30	75	6	4	1,5
G23F06075-4C06R2	6	30	75	6	4	2
G23F08063-4C08R05	8	19	63	8	4	0,5
G23F08063-4C08R1	8	19	63	8	4	1
G23F08063-4C08R15	8	19	63	8	4	1,5
G23F08063-4C08R2	8	19	63	8	4	2
G23F080100-4C08R05	8	40	100	8	4	0,5
G23F080100-4C08R1	8	40	100	8	4	1
G23F080100-4C08R15	8	40	100	8	4	1,5
G23F080100-4C08R2	8	40	100	8	4	2

Продолжение на следующей странице

Серия G23

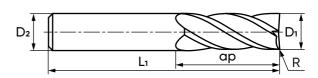




Артикул	D1, мм	ар, мм	L ₁ , MM	D2, мм	Z	R
Артикул	D1, MM	ар, мм	L1, MM	D2, MM		K
G23F100100-4C10R05	10	22	100	10	4	0,5
G23F100100-4C10R1	10	22	100	10	4	1
G23F100100-4C10R15	10	22	100	10	4	1,5
G23F100100-4C10R2	10	22	100	10	4	2
G23F100100-4C10R3	10	22	100	10	4	3
G23F10072-4C10R05	10	22	72	10	4	0,5
G23F10072-4C10R1	10	22	72	10	4	1
G23F10072-4C10R15	10	22	72	10	4	1,5
G23F10072-4C10R2	10	22	72	10	4	2
G23F10072-4C10R3	10	22	72	10	4	3
G23F10075-4C10R05	10	25	75	10	4	0,5
G23F10075-4C10R1	10	25	75	10	4	1
G23F10075-4C10R15	10	25	75	10	4	1,5
G23F10075-4C10R2	10	25	75	10	4	2
G23F10075-4C10R3	10	25	75	10	4	3
G23F12073-4C12R05	12	12	73	12	4	0,5
G23F12073-4C12R1	12	12	73	12	4	1
G23F12073-4C12R15	12	12	73	12	4	1,5
G23F12073-4C12R2	12	12	73	12	4	2
G23F12073-4C12R3	12	12	73	12	4	3
G23F12083-4C12R05	12	26	83	12	4	0,5
G23F12083-4C12R1	12	26	83	12	4	1
G23F12083-4C12R15	12	26	83	12	4	1,5
G23F12083-4C12R2	12	26	83	12	4	2
G23F12083-4C12R3	12	26	83	12	4	3
G23F12075-4C12R05	12	30	75	12	4	0,5
G23F12075-4C12R1	12	30	75	12	4	1
G23F12075-4C12R15	12	30	75	12	4	1,5
G23F12075-4C12R2	12	30	75	12	4	2

Продолжение на следующей странице

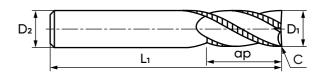
Серия G23



Артикул	D1, мм	ар, мм	L1, MM	D ₂ , мм	Z	R
G23F12075-4C12R3	12	30	75	12	4	3
G23F120100-4C12R05	12	45	100	12	4	0,5
G23F120100-4C12R1	12	45	100	12	4	1
G23F120100-4C12R15	12	45	100	12	4	1,5
G23F120100-4C12R2	12	45	100	12	4	2
G23F120100-4C12R25	12	45	100	12	4	2,5
G23F16092-4C16R05	16	32	92	16	4	0,5
G23F16092-4C16R1	16	32	92	16	4	1
G23F16092-4C16R15	16	32	92	16	4	1,5
G23F16092-4C16R2	16	32	92	16	4	2
G23F16092-4C16R3	16	32	92	16	4	3
G23F160100-4C16R05	16	36	100	16	4	0,5
G23F160100-4C16R1	16	36	100	16	4	1
G23F160100-4C16R15	16	36	100	16	4	1,5
G23F160100-4C16R2	16	36	100	16	4	2
G23F160100-4C16R3	16	36	100	16	4	3
G23F200104-4C20R1	20	38	104	20	4	1
G23F200104-4C20R2	20	38	104	20	4	2
G23F200104-4C20R3	20	38	104	20	4	3

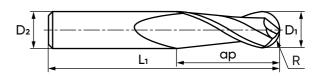
Концевые фрезы универсального применения, черновой профиль

Серия G11



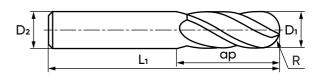
Артикул	D1, мм	ар, мм	L ₁ , MM	D ₂ , мм	Z	Cx45°
G11F04057-4C04	4	11	57	4	4	0,1
G11F06057-4C06	6	13	57	6	4	0,12
G11F08063-4C08	8	19	63	8	4	0,16
G11F10072-4C10	10	22	72	10	4	0,2
G11F12083-4C12	12	26	83	12	4	0,24
G11F16092-4C16	16	32	92	16	4	0,32
G11F200104-4C20	20	38	104	20	4	0,4

Серия G12



Артикул	D ₁ , мм	ар, мм	L ₁ , MM	D2, мм	Z	R, мм
G12R04050-2C04	4	11	50	4	2	2
G12R04057-2C04	4	11	57	4	2	2
G12R04075-2C04	4	11	75	4	2	2
G12R04075-2C04L	4	30	75	4	2	2
G12R06057-2C06	6	13	57	6	2	3
G12R06050-2C06	6	16	50	6	2	3
G12R06075-2C06	6	30	75	6	2	3
G12R08063-2C08	8	19	63	8	2	4
G12R080100-2C08	8	40	100	8	2	4
G12R100100-2C10	10	22	100	10	2	5
G12R10072-2C10	10	22	72	10	2	5
G12R10075-2C10	10	25	75	10	2	5
G12R12073-2C12	12	12	73	12	2	6
G12R12083-2C12	12	26	83	12	2	6
G12R12075-2C12	12	30	75	12	2	6
G12R120100-2C12	12	45	100	12	2	6
G12R16092-2C16	16	32	92	16	2	8
G12R160100-2C16	16	36	100	16	2	8
G12R200104-2C20	20	38	104	20	2	10

Серия G13



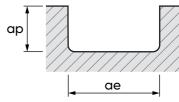
Артикул	D ₁ , мм	ар, мм	L1, MM	D2, мм	Z	R, мм
G13R04050-4C04	4	11	50	4	4	2
G13R04057-4C04	4	11	57	4	4	2
G13R04075-4C04	4	11	75	4	4	2
G13R04075-4C04L	4	30	75	4	4	2
G13R05050-4C05	5	13	50	5	4	2,5
G13R06057-4C06	6	13	57	6	4	3
G13R06050-4C06	6	16	50	6	4	3
G13R06075-4C06	6	30	75	6	4	3
G13R08063-4C08	8	19	63	8	4	4
G13R080100-4C08	8	40	100	8	4	4
G13R100100-4C10	10	22	100	10	4	5
G13R10072-4C10	10	22	72	10	4	5
G13R10075-4C10	10	25	75	10	4	5
G13R12073-4C12	12	12	73	12	4	6
G13R12083-4C12	12	26	83	12	4	6
G13R12075-4C12	12	30	75	12	4	6
G13R120100-4C12	12	45	100	12	4	6
G13R16092-4C16	16	32	92	16	4	8
G13R160100-4C16	16	36	100	16	4	8
G13R200104-4C20	20	38	104	20	4	10

Режимы резания

G1, G2, G3, G4

ISO	Группы обрабатываемогого материала	НВ	Vc м/мин		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь Р2 Низколегированная сталь	120 270	180-270 160-220								
	РЗ Легированная сталь	250	140-180								
Р	Р4 Легированная сталь закаленная – отпущенная	424	130-180	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	Р5 Высоколегированная сталь	240	130-180								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160		0.02 - 0.05			0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min- max		0.03 - 0.07	0.03 - 0.09				0.05 - 0.17
	МЗ Нержавеющая сталь аустенитная	180	60-120								
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240				0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	
K	К2 Серый чугун	180	130-240	Fz min- max	0.02 - 0.05	0.03 - 0.07					0.05 - 0.17
	КЗ Чугун с шаровидным графитом	250	120-240								0.17
	S1 Жаропрочные сплавы на основе железа	200	20-40					0.04 - 0.10	0.04 - 0.11		0.05 - 0.17
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09			0.05 - 0.13	
	S3 Титан и титановые сплавы	110	30-80	IIIGA	0.00	0.07				0.10	
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80								

Режимы резания


G1, G2, G3, G4, обработка пазов

ISO	Группы обрабатываемого материала	НВ	Vc м/мин	ap		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь Р2 Низколегированная сталь	120 270	180-270 160-220	1-2D								
	РЗ Легированная сталь	250	140-180									
Р	Р4 Легированная сталь закаленная – отпущенная	424	130-180	0.5-1D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 -	0.05 - 0.11	0.05 - 0.11
	Р5 Высоколегированная сталь	240	130-180	1-2D								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120	0.5-1D								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160	0.8-1.5D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	
М	M2 Нержавеющая сталь мартенситная	240	60-150									0.05 - 0.11
	М3 Нержавеющая сталь аустенитная	180	60-120									
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240				0.02 - 0.05		0.03 - 0.8			
K	К2 Серый чугун	180	130-240	0.8-1.5D	Fz min - max	0.01 - 0.04		0.02 - 0.07		0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	КЗ Чугун с шаровидным графитом	250	120-240									
	S1 Жаропрочные сплавы на основе железа	200	20-40						0.03 - 0.8			0.05 - 0.11
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	0.5-0.8D	Fz min -	0.01 - 0.04	0.02 - 0.05			0.04 -	0.05 - 0.11	
	S3 Титан и титановые сплавы	110	30-80		IIIGA	0.04				0.7	0	
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80									

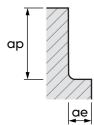
При фрезерованиии в полный паз не использовать цанговые патроны типа ER. Также нужно обратить внимание на жесткость крепления детали и жесткость самого станка.

Для данной операции подходят:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Режимы резания

G1, G2, G3, G4, обработка уступа

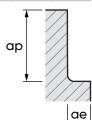

	For the second of the second o						Процент пе	рекрытия ає)	
ISO	Группы обрабатываемого материала	НВ	Vc м/мин			Ø4			Ø6	
					5%	10%	20%	5%	10%	20%
	Р1 Конструкционная сталь	120	180-270							
	Р2 Низколегированная сталь	270	160-220							
	РЗ Легированная сталь	250	140-180							
Р	Р4 Легированная сталь закаленная - отпущенная	424	130-180	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	Р5 Высоколегированная сталь	240	130-180							
	Р6 Высоколегированная сталь закаленная - отпущенная	424	70-120							
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160	Fz min - max	0.04 - 0.12		0.025 - 0.064	0.045 - 0.16	0.04 - 0.12	
М	M2 Нержавеющая сталь мартенситная	240	60-150			0.03 - 0.09				0.03 - 0.09
	М3 Нержавеющая сталь аустенитная	180	60-120							
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240				0.025 - 0.064			
K	К2 Серый чугун	180	130-240	Fz min - max	0.04 - 0.12	0.03 - 0.09		0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	КЗ Чугун с шаровидным графитом	250	120-240					55	J2	
	S1 Жаропрочные сплавы на основе железа	200	20-40							
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min - max	0.04 - 0.12	0.03 - 0.09		0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	S3 Титан и титановые сплавы	110	30-80	max	02	0.07		0.10	0.12	0.09
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80							

При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 M1-2 К диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использования следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для фрезеровки жаропрочных сплавов и титатана - глубина фрезерования 1D и ширина ае не больше 25% от диаметра.

Для высоколегированных, легированных, закаленных-отпущенных и аустенитных нержавеющих сталей глубина фрезерования 1.5D и ширина ае не больше 40% от диаметра.


G1, G2, G3, G4, обработка уступа

							Процен	т перекр	ытия ае						
Группы		Ø8			Ø10			Ø12			Ø16			Ø20	
	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%
P1															
P2															
P3															
P4	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
P5															
P6															
M1															
M2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
M3															
K1															
K2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
К3															
S1															
S2	0.065 -	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
S3	0.2	0.13	0.12	0.23	0.17	0.15	0.23	0.10	0.12	0.03	0.17	0.12	0.37	0.20	0.13
S4															

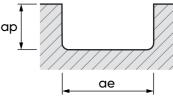
При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 M1-2 K диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использования следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для фрезеровки жаропрочных сплавов и титатана - глубина фрезерования 1D и ширина ае не больше 25% от диаметра.

G5, G6, G7, G8

ISO	Группы обрабатываемого материала	НВ	Vc м/мин		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь	120	180-270								
	Р2 Низколегированная сталь	270	160-220								
	РЗ Легированная сталь	250	140-180	F:	0.02 -	0.07	0.07	0.04 -	0.04 -	0.05 -	0.05 -
Р	Р4 Легированная сталь закаленная - отпущенная	424	130-180	Fz min- max	0.02 -	0.03 - 0.07	0.03 - 0.09	0.04 -	0.04 -	0.05 -	0.05 -
	Р5 Высоколегированная сталь	240	130-180								
	Р6 Высоколегированная сталь закаленная - отпущенная	424	70-120								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160								
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	М3 Нержавеющая сталь аустенитная	180	60-120								
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240								
K	К2 Серый чугун	180	130-240	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	КЗ Чугун с шаровидным графитом	250	120-240								
	S1 Жаропрочные сплавы на основе железа	200	20-40								
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	S3 Титан и титановые сплавы	110	30-80		0.00		0.07			00	
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80								

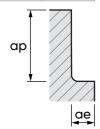

G5, G6, G7, G8, обработка пазов

ISO	Группы обрабатываемого материала	НВ	Vc м/мин	ар		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь	120	180-270									
	Р2 Низколегированная сталь	270	160-220	1-2D								
	РЗ Легированная сталь	250	140-180									
Р	Р4 Легированная сталь закаленная - отпущенная	424	130-180	0.5-1D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	Р5 Высоколегированная сталь	240	130-180	1-2D								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120	0.5-1D								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160									
М	M2 Нержавеющая сталь мартенситная	240	60-150	0.8-1.5D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	М3 Нержавеющая сталь аустенитная	180	60-120									
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240									
K	К2 Серый чугун	180	130-240	0.8-1.5D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	КЗ Чугун с шаровидным графитом	250	120-240									
	S1 Жаропрочные сплавы на основе железа	200	20-40									
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	0.5-0.8D	Fz min -	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 -	0.05 - 0.11	0.05 - 0.11
	S3 Титан и титановые сплавы	110	30-80		IIIGA	0.04	0.00	0.07	0.0	0.7	0.11	0.11
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80									

При фрезерованиии в полный паз не использовать цанговые патроны типа ER. Также нужно обратить внимание на жесткость крепления детали и жесткость самого станка.

Для данной операции подходят:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

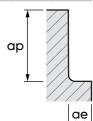

G5, G6, G7, G8, обработка уступа получистовая

	F						Процент пе	рекрытия ае		
ISO	Группы обрабатываемого материала	НВ	Vc м/мин			Ø4			Ø6	
	·				5%	10%	20%	5%	0.045 - 0.04 - 0.12 0.016 0.12 0.045 - 0.16 0.12 0.012	20%
	Р1 Конструкционная сталь	120	180-270							
	Р2 Низколегированная сталь	270	160-220							
	РЗ Легированная сталь	250	140-180							
Р	Р4 Легированная сталь закаленная – отпущенная	424	130-180	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064			0.03 - 0.09
	Р5 Высоколегированная сталь	240	130-180							
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120							
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160							
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064			0.03 - 0.09
	М3 Нержавеющая сталь аустенитная	180	60-120							
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240							
K	К2 Серый чугун	180	130-240	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064			0.03 - 0.09
	КЗ Чугун с шаровидным графитом	250	120-240							
	S1 Жаропрочные сплавы на основе железа	200	20-40							
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	S3 Титан и титановые сплавы	110	30-80	IIIGA	0.12	0.07	0.004	0.10	0.12	0.07
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80							

При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 M1-2 К диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использования следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для фрезеровки жаропрочных сплавов и титатана - глубина фрезерования 1D и ширина ае не больше 25% от диаметра.


G5, G6, G7, G8, обработка уступа получистовая

							Процен	т перекр	ытия ае						
Группы		Ø8			Ø10			Ø12			Ø16			Ø20	
	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%
P1															
P2															
P3															
P4	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
P5															
P6															
M1															
M2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
M3															
K1															
K2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
К3															
S1															
S2	0.065 -	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
S3	0.2														
S4															

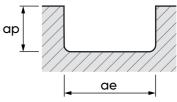
При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 M1-2 K диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использования следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для фрезеровки жаропрочных сплавов и титатана - глубина фрезерования 1D и ширина ае не больше 25% от диаметра.

G9, G10

ISO	Группы обрабатываемогого материала	НВ	Vc м/мин		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь	120	180-270								
	Р2 Низколегированная сталь	270	160-220								
	РЗ Легированная сталь	250	140-180								
Р	Р4 Легированная сталь закаленная - отпущенная	424	130-180	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	Р5 Высоколегированная сталь	240	130-180								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160								
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	М3 Нержавеющая сталь аустенитная	180	60-120								
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240								
K	К2 Серый чугун	180	130-240	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	КЗ Чугун с шаровидным графитом	250	120-240								
	S1 Жаропрочные сплавы на основе железа	200	20-40								
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	S3 Титан и титановые сплавы	110	30-80		0.00	0.07		55		35	
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80								

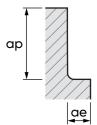

G9, G10, обработка пазов

ISO	Группы обрабатываемого материала	НВ	Vc м/мин	ap		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь Р2 Низколегированная сталь Р3 Легированная сталь	120 270 250	180-270 160-220 140-180	1-2D								
Р	Р4 Легированная сталь закаленная - отпущенная	424	130-180	0.5-1D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	Р5 Высоколегированная сталь	240	130-180	1-2D								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120	0.5-1D								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160									
М	M2 Нержавеющая сталь мартенситная	240	60-150	0.8-1.5D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	МЗ Нержавеющая сталь аустенитная	180	60-120									
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240									
K	К2 Серый чугун	180	130-240	0.8-1.5D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	КЗ Чугун с шаровидным графитом	250	120-240									
	S1 Жаропрочные сплавы на основе железа	200	20-40									
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	0.5-0.8D	Fz min -	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 -	0.05 - 0.11	0.05 - 0.11
	S3 Титан и титановые сплавы	110	30-80		IIIGA	0.04	0.00	0.07	0.0	0.7	0.11	0.11
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80									

При фрезерованиии в полный паз не использовать цанговые патроны типа ER. Также нужно обратить внимание на жесткость крепления детали и жесткость самого станка.

Для данной операции подходят:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

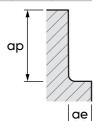

G9, G10, обработка уступа получистовая

	F						Процент пер	оекрытия ае		
ISO	Группы обрабатываемого материала	НВ	Vc м/мин			Ø4			Ø6	
					5%	10%	20%	5%	5 - 0.04 - 0.0 5 - 0.04 - 0.0 5 - 0.12 0.0 5 - 0.12 0.0	20%
	Р1 Конструкционная сталь	120	180-270							
	Р2 Низколегированная сталь	270	160-220							
	РЗ Легированная сталь	250	140-180							
Р	Р4 Легированная сталь закаленная - отпущенная	424	130-180	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16		0.03 - 0.09
	Р5 Высоколегированная сталь	240	130-180							
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120							
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160							
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16		0.03 - 0.09
	МЗ Нержавеющая сталь аустенитная	180	60-120							
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240							
K	К2 Серый чугун	180	130-240	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16		0.03 - 0.09
	КЗ Чугун с шаровидным графитом	250	120-240		02	3.07	0.00	55	52	
	S1 Жаропрочные сплавы на основе железа	200	20-40							
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16		0.03 - 0.09
	S3 Титан и титановые сплавы	110	30-80	max	0.12	0.07	0.504	0.10	U.12	0.07
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80							

При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 M1-2 К диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использования следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для фрезеровки жаропрочных сплавов и титатана - глубина фрезерования 1D и ширина ае не больше 25% от диаметра.


G9, G10, обработка уступа получистовая

							Процен	т перекр	ытия ае						
Группы		Ø8			Ø10			Ø12			Ø16			Ø20	
	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%
P1															
P2															
Р3															
P4	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
P5															
P6															
M1															
M2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
M3															
K1															
K2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
К3															
S1															
S2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
S3	0.2														
\$4															

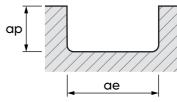
При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 M1-2 K диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использования следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для фрезеровки жаропрочных сплавов и титатана - глубина фрезерования 1D и ширина ае не больше 25% от диаметра.

G20, G21, G22, G23

ISO	Группы обрабатываемогого материала	НВ	Vc м/мин		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь Р2 Низколегированная сталь	120 270	180-270 160-220								
	РЗ Легированная сталь	250	140-180								
Р	Р4 Легированная сталь закаленная - отпущенная	424	130-180	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	Р5 Высоколегированная сталь	240	130-180								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120	70-120							
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160								
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	МЗ Нержавеющая сталь аустенитная	180	60-120								
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240								
K	К2 Серый чугун	180	130-240	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	КЗ Чугун с шаровидным графитом	250	120-240								
	S1 Жаропрочные сплавы на основе железа	200	20-40								
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	S3 Титан и титановые сплавы	110	30-80	IIIGA	0.00	0.07	0.07	0.10	0.11	0.10	0.17
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80								

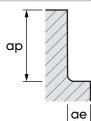

G20, G21, G22, G23, обработка пазов

ISO	Группы обрабатываемого материала	НВ	Vc м/мин	ар		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь Р2 Низколегированная сталь	120 270	180-270	1-2D								
	РЗ Легированная сталь	250	140-180	1 25								
Р	Р4 Легированная сталь закаленная – отпущенная	424	130-180	0.5-1D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	Р5 Высоколегированная сталь	240	130-180	1-2D								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120	0.5-1D								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160									
М	M2 Нержавеющая сталь мартенситная	240	60-150	0.8-1.5D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	МЗ Нержавеющая сталь аустенитная	180	60-120									
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240									
K	К2 Серый чугун	180	130-240	0.8-1.5D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	КЗ Чугун с шаровидным графитом	250	120-240									
	S1 Жаропрочные сплавы на основе железа	200	20-40									
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	0.5-0.8D	Fz min -	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 -	0.05 - 0.11	0.05 - 0.11
	S3 Титан и титановые сплавы	110	30-80		III GA	0.07	0.00	0.07	0.0	0.7	0	0
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80									

При фрезерованиии в полный паз не использовать цанговые патроны типа ER. Также нужно обратить внимание на жесткость крепления детали и жесткость самого станка.

Для данной операции подходят:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

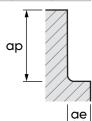

G20, G21, G22, G23, обработка уступа получистовая

	F						Процент пе	рекрытия ае		
ISO	Группы обрабатываемого материала	НВ	Vc м/мин			Ø4			Ø6	
	·				5%	10%	20%	0.045 - 0.04 - 0. 0.045 - 0.16	20%	
	Р1 Конструкционная сталь	120	180-270							
	Р2 Низколегированная сталь	270	160-220							
	РЗ Легированная сталь	250	140-180							
Р	Р4 Легированная сталь закаленная – отпущенная	424	130-180	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064			0.03 - 0.09
	Р5 Высоколегированная сталь	240	130-180							
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120							
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160							
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064			0.03 - 0.09
	М3 Нержавеющая сталь аустенитная	180	60-120							
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240							
K	К2 Серый чугун	180	130-240	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064			0.03 - 0.09
	КЗ Чугун с шаровидным графитом	250	120-240							
	S1 Жаропрочные сплавы на основе железа	200	20-40							
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	S3 Титан и титановые сплавы	110	30-80	IIIGA	0.12	0.07	0.004	0.10	0.12	0.07
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80							

При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 M1-2 К диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использования следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для фрезеровки жаропрочных сплавов и титатана - глубина фрезерования 1D и ширина ае не больше 25% от диаметра.


G20, G21, G22, G23, обработка уступа получистовая

							Процен	т перекр	ытия ае						
Группы		Ø8			Ø10			Ø12			Ø16			Ø20	
	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%
P1															
P2															
P3															
P4	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
P5															
P6															
M1															
M2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
M3															
K1															
K2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
К3															
S1															
S2	0.065 - 0.2	0.05 - 0.15	0.04 -	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
S3	J	0.15 0.13		0.20	J	55	0.20	00		0.00		J	0.07	0.20	
S4															

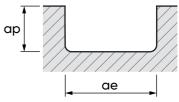
При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 M1-2 К диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использования следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для фрезеровки жаропрочных сплавов и титатана - глубина фрезерования 1D и ширина ае не больше 25% от диаметра.

G11

ISO	Группы обрабатываемогого материала	НВ	Vc м/мин		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь Р2 Низколегированная сталь	120 270	180-270 160-220								
	РЗ Легированная сталь	250	140-180								
Р	Р4 Легированная сталь закаленная – отпущенная	424	130-180	Fz min- max	0.03 - 0.05	0.03 - 0.07	0.04 - 0.09	0.05 - 0.10	0.06 - 0.11	0.06 - 0.13	0.07 - 0.17
	Р5 Высоколегированная сталь	240	130-180								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160								
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min- max	0.03 - 0.05	0.03 - 0.07	0.04 - 0.09	0.05 - 0.10	0.06 - 0.11	0.06 - 0.13	0.07 - 0.17
	МЗ Нержавеющая сталь аустенитная	180	60-120								
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240								
K	К2 Серый чугун	180	130-240	Fz min- max	0.03 - 0.05	0.03 - 0.07	0.04 - 0.09	0.05 - 0.10	0.06 - 0.11	0.06 - 0.13	0.07 - 0.17
	КЗ Чугун с шаровидным графитом	250	120-240								
	S1 Жаропрочные сплавы на основе железа	200	20-40								
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min- max	0.03 - 0.05	0.03 - 0.07		0.06 - 0.11	0.06 - 0.13	0.07 - 0.17	
	S3 Титан и титановые сплавы	110	30-80					0.09 0.10			
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80								

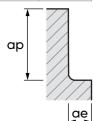

G11, обработка пазов

ISO	Группы обрабатываемого материала	НВ	Vc м/мин	ap		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь Р2 Низколегированная сталь	120 270	180-270 160-220	1-2D								
	РЗ Легированная сталь	250	140-180									
Р	Р4 Легированная сталь закаленная – отпущенная	424	130-180	0.5-1D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 -	0.05 - 0.11	0.05 - 0.11
	Р5 Высоколегированная сталь	240	130-180	1-2D								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120	0.5-1D								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160									
M	M2 Нержавеющая сталь мартенситная	240	60-150	0.8-1.5D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	МЗ Нержавеющая сталь аустенитная	180	60-120									
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240									
K	К2 Серый чугун	180	130-240	0.8-1.5D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	КЗ Чугун с шаровидным графитом	250	120-240									
	S1 Жаропрочные сплавы на основе железа	200	20-40									
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	0.5-0.8D	Fz min -	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 -	0.05 - 0.11	0.05 - 0.11
	S3 Титан и титановые сплавы	110	30-80			0.0 7	.04 0.05	0.07	0.0	""		
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80									

При фрезерованиии в полный паз не использовать цанговые патроны типа ER. Также нужно обратить внимание на жесткость крепления детали и жесткость самого станка.

Для данной операции подходят:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

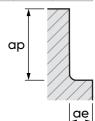

G11, обработка уступа получистовая

	E						Процент пе	рекрытия ае		
ISO	Группы обрабатываемого материала	НВ	Vc м/мин			Ø4			Ø6	
	'				5%	10%	20%	5%	10%	20%
	Р1 Конструкционная сталь	120	180-270							
	Р2 Низколегированная сталь	270	160-220							
	РЗ Легированная сталь	250	140-180							
Р	Р4 Легированная сталь закаленная – отпущенная	424	130-180	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	Р5 Высоколегированная сталь	240	130-180							
	Р6 Высоколегированная сталь закаленная - отпущенная	424	70-120							
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160							
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	М3 Нержавеющая сталь аустенитная	180	60-120							
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240							
K	К2 Серый чугун	180	130-240	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	КЗ Чугун с шаровидным графитом	250	120-240							
	S1 Жаропрочные сплавы на основе железа	200	20-40							
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min -	0.04 - 0.12	0.03 - 0.025 - 0.09 0.064	0.025 - 0.064	0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	S3 Титан и титановые сплавы	110	30-80		J <u>-</u>	0.07	0.00 /	55	· · · -	0.07
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80	max						

При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 M1-2 К диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использования следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для фрезеровки жаропрочных сплавов и титатана - глубина фрезерования 1D и ширина ае не больше 25% от диаметра.


G11, обработка уступа получистовая

							Процен	т перекр	ытия ае						
Группы		Ø8			Ø10			Ø12			Ø16			Ø20	
	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%
P1															
P2															
P3															
P4	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
P5															
P6															
M1															
M2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
M3															
K1															
K2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
К3															
S1															
S2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
S3	5.2			0.20	5	00	0.20	00		0.00		J	0.07	5.25	
S4															

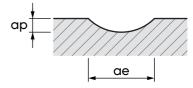
При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 M1-2 K диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использования следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для фрезеровки жаропрочных сплавов и титатана - глубина фрезерования 1D и ширина ае не больше 25% от диаметра.

G12, G13

ISO	Группы обрабатываемогого материала	НВ	Vc м/мин		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь	120	180-270								
	Р2 Низколегированная сталь	270	160-220								
	РЗ Легированная сталь	250	140-180								
Р	Р4 Легированная сталь закаленная - отпущенная	424	130-180	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	Р5 Высоколегированная сталь	240	130-180								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160								
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	М3 Нержавеющая сталь аустенитная	180	60-120								
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240								
K	К2 Серый чугун	180	130-240	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	КЗ Чугун с шаровидным графитом	250	120-240								
	S1 Жаропрочные сплавы на основе железа	200	20-40								
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	S3 Титан и титановые сплавы	110	30-80		3.33	5 0.07	7 0.09		3	00	
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80								


G12, G13

ISO	Группы обрабатываемого материала	НВ	Vc м/мин	ae	ар	Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь Р2 Низколегированная сталь	120 270	160			0.027	0.04	0.06	0.065	0.07	0.075	0.09
	РЗ Легированная сталь	250	160									
Р	Р4 Легированная сталь закаленная – отпущенная	424	70	0.5D	1D	0.019	0.028	0.042	0.045	0.049	0.052	0.063
	Р5 Высоколегированная сталь	240	120			0.027	0.04	0.06	0.065	0.07	0.075	0.09
	Р6 Высоколегированная сталь закаленная - отпущенная	424	70			0.019	0.028	0.042	0.045	0.049	0.052	0.063
	М1 Нержавеющая сталь феритная - мартенситная	200	85			0.02	0.041	0.045	0.05	0.055	0.06	0.065
М	M2 Нержавеющая сталь мартенситная	240	77	0.5D	1D	0.02	0.041	0.045	0.05	0.055	0.06	0.065
	М3 Нержавеющая сталь аустенитная	180	77			0.015	0.03	0.04	0.045	0.05	0.055	0.058
	К1 Ковкий чугун, Высокопрочный чугун	230	119									
K	К2 Серый чугун	180	119	0.5D	1D	0.033	0.05	0.074	0.081	0.087	0.093	0.112
	КЗ Чугун с шаровидным графитом	250	119									
	S1 Жаропрочные сплавы на основе железа	200	21	0.20	0.70	0.01/	0.000	0.071	0.075	0.070	0.073	0.0/5
S	S2 Жаропрочные сплавы на основе никеля	350	21	0.2D	0.3D	0.014	0.028	0.031	0.035	0.038	0.042	0.045
	S3 Титан и титановые сплавы	110	47									
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	47	0.5D	0.3D	0.018	0.037	0.04	0.045	0.049	0.054	0.058

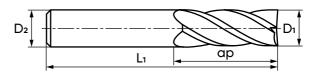
При фрезерованиии в полный паз не использовать цанговые патроны типа ER. Также нужно обратить внимание на жесткость крепления детали и жесткость самого станка.

Для данной операции подходят:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

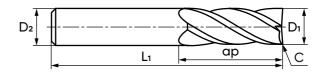
Концевые фрезы для обработки нержавеющих сталей и жаропрочных сплавов

Серия М11



Артикул	D1, мм	ар, мм	L1, MM	D ₂ , MM	Z
M11F04057-4C04	4	11	57	4	4
M11F06057-4C06	6	13	57	6	4
M11F08063-4C08	8	19	63	8	4
M11F10072-4C10	10	22	72	10	4
M11F12083-4C12	12	26	83	12	4
M11F16092-4C16	16	32	92	16	4

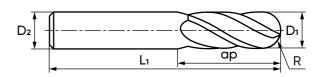
Серия М13



Артикул	D1, мм	ар, мм	L ₁ , MM	D2, мм	Z	Cx45°
M13F04057-4C04	4	11	57	4	4	0,06
M13F06057-4C06	6	13	57	6	4	0,09
M13F08063-4C08	8	19	63	8	4	0,12
M13F10072-4C10	10	22	72	10	4	0,15
M13F12083-4C12	12	26	83	12	4	0,18
M13F16092-4C16	16	32	92	16	4	0,24

Концевые фрезы для обработки нержавеющих сталей и жаропрочных сплавов

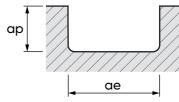
Серия М31



Артикул	D1, мм	ар, мм	L ₁ , MM	D ₂ , мм	Z	R, мм
M31R04057-4C04	4	11	57	4	4	2
M31R06057-4C06	6	13	57	6	4	3
M31R08063-4C08	8	19	63	8	4	4
M31R10072-4C10	10	22	72	10	4	5
M31R12057-4C12	12	12	57	12	4	6
M31R16092-4C15	16	32	92	16	4	8

M11, M13

ISO	Группы обрабатываемогого материала	НВ	Vc м/мин		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь Р2 Низколегированная сталь	120 270	180-270 160-220								
	РЗ Легированная сталь	250	140-180								
Р	Р4 Легированная сталь закаленная – отпущенная	424	130-180	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	Р5 Высоколегированная сталь	240	130-180								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160								
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	МЗ Нержавеющая сталь аустенитная	180	60-120								
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240								
K	К2 Серый чугун	180	130-240	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	КЗ Чугун с шаровидным графитом	250	120-240								
	S1 Жаропрочные сплавы на основе железа	200	20-40								
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min- max	0.02 - 0.05	0.03 - 0.07		0.04 - 0.11	0.05 - 0.13	0.05 - 0.17	
	S3 Титан и титановые сплавы	110	30-80		5.55				J		
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80								

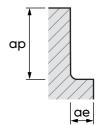

М11, М13, обработка пазов

ISO	Группы обрабатываемого материала	НВ	Vc м/мин	ap		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь Р2 Низколегированная сталь	120 270	180-270 160-220	1-2D								
	РЗ Легированная сталь	250	140-180									
Р	Р4 Легированная сталь закаленная – отпущенная	424	130-180	0.5-1D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 -	0.05 - 0.11	0.05 - 0.11
	Р5 Высоколегированная сталь	240	130-180	1-2D								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120	0.5-1D								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160									
М	M2 Нержавеющая сталь мартенситная	240	60-150	0.8-1.5D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	МЗ Нержавеющая сталь аустенитная	180	60-120									
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240									
K	К2 Серый чугун	180	130-240	0.8-1.5D	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 - 0.9	0.05 - 0.11	0.05 - 0.11
	КЗ Чугун с шаровидным графитом	250	120-240									
	S1 Жаропрочные сплавы на основе железа	200	20-40									
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	0.5-0.8D	Fz min -	0.01 - 0.04	0.02 - 0.05	0.02 - 0.07	0.03 - 0.8	0.04 -	0.05 - 0.11	0.05 - 0.11
	S3 Титан и титановые сплавы	110	30-80			0.0 7	.04 0.05	3.37	0.0	J		
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80									

При фрезерованиии в полный паз не использовать цанговые патроны типа ER. Также нужно обратить внимание на жесткость крепления детали и жесткость самого станка.

Для данной операции подходят:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

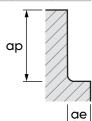

М11, М13, обработка уступа получистовая

							Процент пер	рекрытия ае		
ISO	Группы обрабатываемого материала	НВ	Vc м/мин			Ø4			Ø6	
	·				5%	10%	20%	5%	10%	20%
	Р1 Конструкционная сталь	120	180-270							
	Р2 Низколегированная сталь	270	160-220							
	РЗ Легированная сталь	250	140-180							
Р	Р4 Легированная сталь закаленная - отпущенная	424	130-180	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	Р5 Высоколегированная сталь	240	130-180							
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120							
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160							
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	МЗ Нержавеющая сталь аустенитная	180	60-120							
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240							
K	К2 Серый чугун	180	130-240	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	КЗ Чугун с шаровидным графитом	250	120-240							
	S1 Жаропрочные сплавы на основе железа	200	20-40							
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min - max	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064	0.045 - 0.16	0.04 - 0.12	0.03 - 0.09
	S3 Титан и титановые сплавы	110	30-80	max	0.12	0.07	0.004	0.10	0.12	0.07
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80							

При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 M1-2 К диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использования следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для фрезеровки жаропрочных сплавов и титатана - глубина фрезерования 1D и ширина ае не больше 25% от диаметра.


М11, М13, обработка уступа получистовая

							Процен	т перекр	ытия ае						
Группы		Ø8			Ø10			Ø12			Ø16			Ø20	
	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%
P1															
P2															
P3															
P4	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
P5															
P6															
M1															
M2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
M3															
K1															
K2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
К3															
S1															
S2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.12	0.12 - 0.03	0.08 - 0.17	0.4 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13
S3															
S4															

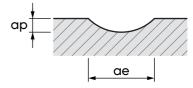
При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 M1-2 K диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использования следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для фрезеровки жаропрочных сплавов и титатана - глубина фрезерования 1D и ширина ае не больше 25% от диаметра.

M31

ISO	Группы обрабатываемогого материала	НВ	Vc м/мин		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь Р2 Низколегированная сталь	120 270	180-270 160-220								
	РЗ Легированная сталь	250	140-180								
Р	Р4 Легированная сталь закаленная – отпущенная	424	130-180	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	Р5 Высоколегированная сталь	240	130-180								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160								
М	M2 Нержавеющая сталь мартенситная	240	60-150	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	МЗ Нержавеющая сталь аустенитная	180	60-120								
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240								
K	К2 Серый чугун	180	130-240	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	КЗ Чугун с шаровидным графитом	250	120-240								
	S1 Жаропрочные сплавы на основе железа	200	20-40								
S	S2 Жаропрочные сплавы на основе никеля	350	20-30	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	S3 Титан и титановые сплавы	110	30-80		5.55		,				
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80								


M31

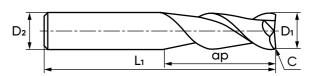
ISO	Группы обрабатываемого материала	НВ	Vc м/мин	ae	ap	Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь	120	170				201	201		0.07	0.075	0.00
	Р2 Низколегированная сталь	270	170			-	0.04	0.06	-	0.07	0.075	0.09
	РЗ Легированная сталь	250	170									
Р	Р4 Легированная сталь закаленная - отпущенная	424	80	0.5D	1D	-	0.028	0.042	-	0.049	0.052	0.063
	Р5 Высоколегированная сталь	240	130			-	0.04	0.06	-	0.07	0.075	0.09
	Р6 Высоколегированная сталь закаленная – отпущенная	424	80			-	0.028	0.042	-	0.049	0.052	0.063
	М1 Нержавеющая сталь феритная - мартенситная	200	90			_	0.041	0.045	-	0.055	0.06	0.065
М	M2 Нержавеющая сталь мартенситная	240	95	0.5D	1D	-	0.041	0.045	-	0.055	0.06	0.065
	МЗ Нержавеющая сталь аустенитная	180	95			-	0.03	0.04	-	0.05	0.055	0.058
	К1 Ковкий чугун, Высокопрочный чугун	230	119									
K	К2 Серый чугун	180	119	0.5D	1D	_	0.05	0.074	-	0.087	0.093	0.112
	КЗ Чугун с шаровидным графитом	250	119									
	\$1 Жаропрочные сплавы на основе железа	200	25	0.00	0.75		0.000	0.071		0.070	0.040	00/5
S	S2 Жаропрочные сплавы на основе никеля	350	25	0.2D	0.3D	_	0.028	0.031	-	0.038	0.042	0.045
	S3 Титан и титановые сплавы	110	50									
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	50	0.5D	0.3D	_	0.037	0.04	-	0.049	0.054	0.058

При фрезерованиии в полный паз не использовать цанговые патроны типа ER. Также нужно обратить внимание на жесткость крепления детали и жесткость самого станка.

Для данной операции подходят:

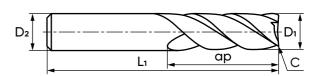
- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Серия N92



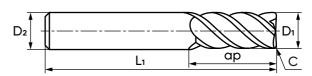
Артикул	D1, мм	ар, мм	L1, MM	D2, мм	Z	Cx45°
N92F04050-2C04	4	11	50	4	2	0,2
N92F04057-2C04	4	11	57	4	2	0,2
N92F04075-2C04	4	30	75	4	2	0,2
N92F06057-2C06	6	13	57	6	2	0,2
N92F06050-2C06	6	16	50	6	2	0,2
N92F06075-2C06	6	30	75	6	2	0,2
N92F08063-2C08	8	19	63	8	2	0,25
N92F080100-2C08	8	40	100	8	2	0,25
N92F100100-2C10	10	22	100	10	2	0,25
N92F10072-2C10	10	22	72	10	2	0,25
N92F10075-2C10	10	25	75	10	2	0,25
N92F12073-2C12	12	12	73	12	2	0,3
N92F12083-2C12	12	26	83	12	2	0,3
N92F12075-2C12	12	30	75	12	2	0,3
N92F120100-2C12	12	45	100	12	2	0,3
N92F16092-2C16	16	32	92	16	2	0,4
N92F160100-2C16	16	36	100	16	2	0,4
N92F200104-2C20	20	38	104	20	2	0,5

Серия N93



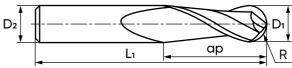
Артикул	D1, мм	ар, мм	L1, MM	D2, мм	Z	Cx45°
N93F04050-3C04	4	11	50	4	3	0,2
N93F04057-3C04	4	11	57	4	3	0,2
N93F04057-3C04L	4	20	57	4	3	0,2
N93F04075-3C04	4	30	75	4	3	0,2
N93F06057-3C06	6	13	57	6	3	0,2
N93F06050-3C06	6	16	50	6	3	0,2
N93F06075-3C06	6	30	75	6	3	0,2
N93F08063-3C08	8	19	63	8	3	0,25
N93F080100-3C08	8	40	100	8	3	0,25
N93F100100-3C10	10	22	100	10	3	0,25
N93F10072-3C10	10	22	72	10	3	0,25
N93F10075-3C10	10	25	75	10	3	0,25
N93F12073-3C12	12	12	73	12	3	0,3
N93F12083-3C12	12	26	83	12	3	0,3
N93F12075-3C12	12	30	75	12	3	0,3
N93F120100-3C12	12	45	100	12	3	0,3
N93F16092-3C16	16	32	92	16	3	0,4
N93F160100-3C16	16	36	100	16	3	0,4
N93F200104-3C20	20	38	104	20	3	0,5

Серия N94

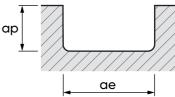


Артикул	D ₁ , мм	ар, мм	L1, MM	D ₂ , мм	Z	Cx45°
N94F04050-4C04	4	11	50	4	4	0,2
N94F04057-4C04	4	11	57	4	4	0,2
N94F04075-4C04	4	30	75	4	4	0,2
N94F06057-4C06	6	13	57	6	4	0,2
N94F06050-4C06	6	16	50	6	4	0,2
N94F06075-4C06	6	30	75	6	4	0,2
N94F08063-4C08	8	19	63	8	4	0,25
N94F080100-4C08	8	40	100	8	4	0,25
N94F100100-4C10	10	22	100	10	4	0,25
N94F10072-4C10	10	22	72	10	4	0,25
N94F10075-4C10	10	25	75	10	4	0,25
N94F12073-4C12	12	12	73	12	4	0,3
N94F12083-4C12	12	26	83	12	4	0,3
N94F12075-4C12	12	30	75	12	4	0,3
N94F120100-4C12	12	45	100	12	4	0,3
N94F16092-4C16	16	32	92	16	4	0,4
N94F160100-4C16	16	36	100	16	4	0,4
N94F200104-4C20	20	38	104	20	4	0,5

Серия N95



Артикул	D ₁ , MM	ар, мм	L1, MM	D2, мм	Z	R, мм
N95R04050-2C04	4	11	50	4	2	2
N95R04057-2C04	4	11	57	4	2	2
N95R04075-2C04	4	30	75	4	2	2
N95R06057-2C06	6	13	57	6	2	3
N95R06050-2C06	6	16	50	6	2	3
N95R06075-2C06	6	30	75	6	2	3
N95R08063-2C08	8	19	63	8	2	4
N95R080100-2C08	8	40	100	8	2	4
N95R100100-2C10	10	22	100	10	2	5
N95R10072-2C10	10	22	72	10	2	5
N95R10075-2C10	10	25	75	10	2	5
N95R12073-2C12	12	12	73	12	2	6
N95R12083-2C12	12	26	83	12	2	6
N95R12075-2C12	12	30	75	12	2	6
N95R120100-2C12	12	45	100	12	2	6
N95R16092-2C16	16	32	92	16	2	8
N95R160100-2C16	16	36	100	16	2	8
N95R200104-2C20	20	38	104	20	2	10

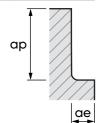


N92, N93, N94

ISO	Группы обрабатываемогого материала	НВ	Vc м/мин		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	S3 Титан и титановые сплавы	110	30-50	F=i-	0.01 -	0.02	0.03	0.07	0.07	0.05	0.05
S	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-50	Fz min- max	0.01 -	0.02 - 0.06	0.02 - 0.08	0.03 - 0.9	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	N1 Деформирумые алюминиевые сплавы	60-100	700-900								
	N2 Литейные алюминиевые сплавы. <12% Si	75-90	750-900								
N	N3 Литейные алюминиевые сплавы. >12% Si	90-130	400-450	Fz min - max	0.01 - 0.05	0.02 - 0.06	0.02 - 0.08	0.03 - 0.9	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	N4 Свинцовая бронза, латунь, медные сплавы	90-110	500-550								
	N5 Электролитная медь	100	350-380								

N92, N93, N94, обработка пазов

ISO	Группы обрабатываемого материала	НВ	Vc м/мин	ар		Ø4	Ø6	Ø8	Ø10) Ø12	2 Ø16	Ø20
	S3 Титан и титановые сплавы	110	30-50	Fz min-	0.01 -	0.02 -	0.02		.03 -	0.04 -	0.05 -	0.05 -
S	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-50	max	0.01	0.02 -	0.02		0.9	0.11	0.03 -	0.03 -
	N1 Деформирумые алюминиевые сплавы	60-100	700-900									
	N2 Литейные алюминиевые сплавы. <12% Si.	75-90	750-900									
N	N3 Литейные алюминиевые сплавы. >12% Si.	90-130	400-450	Fz min - max	0.01 - 0.04	0.02 - 0.05	0.02		03 -	0.04 - 0.09	0.05 - 0.11	0.05 - 0.11
	N4 Свинцовая бронза, латунь, медные сплавы	90-110	500-550									
	N5 Электролитная медь	100	350-380									


N92, N93, N94, обработка уступа получистовая

	F						Процент пер	рекрытия ає)	
ISO	Группы обрабатываемого материала	НВ	Vc м/мин			Ø4			Ø6	
	'				5%	10%	20%	5%	10%	20%
	S3 Титан и титановые сплавы	110	30-50	Fz min-	0.03 -	0.02 -	0.012 -	0.045 -	0.035 -	0.025 -
S	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-50	max	0.09	0.02 -	0.012 -	0.045 -	0.035 -	0.025 -
	N1 Деформирумые алюминиевые сплавы	60-100	700-900							
	N2 Литейные алюминиевые сплавы. <12% Si	75-90	750-900							
N	N3 Литейные алюминиевые сплавы. >12% Si	90-130	400-450	Fz min - max	0.03 - 0.09	0.02 - 0.07	0.012 - 0.05	0.045 - 0.12	0.035 - 0.8	0.025 - 0.065
	N4 Свинцовая бронза, латунь, медные сплавы	90-110	500-550							
	N5 Электролитная медь	100	350-380							

							Процен	т перекр	ытия ае						
Группы		Ø8			Ø10			Ø12			Ø16			Ø20	
	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%
S3	0.05 -	0.038 -	0.025 -	0.06 -	0.05 -	0.036 -	0.094 -	0.07 -	0.05 -	0.095 -	0.07 -	0.05 -	0.095 -	0.07 -	0.05 -
\$4	0.16	0.038 -	0.025 -	0.17	0.05 -	0.036 -	0.094 -	0.18	0.14	0.095 -	0.19	0.14	0.095 -	0.19	0.14
N1															
N2															
N3	0.05 - 0.16	0.038 - 0.13	0.025 - 0.098	0.06 - 0.17	0.05 - 0.13	0.036 - 0.1	0.094 - 0.25	0.07 - 0.18	0.05 - 0.14	0.095 - 0.25	0.07 - 0.19	0.05 - 0.14	0.095 - 0.25	0.07 - 0.19	0.05 - 0.14
N4															
N5															

При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов N рекомендуем производить фрезеровку на всю длину режущей части. В остальных случаях глубина ар - 2D.

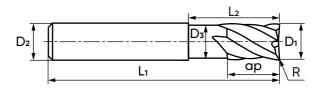
Для фрезеровки жаропрочных сплавов и титатана глубина фрезерования 1D и ширина ае не больше 25% от диаметра.

N95

ISO	Группы обрабатываемогого материала	НВ	Vc м/мин		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
S	S3 Титан и титановые сплавы	110	30-50	Fz min- max	0.01 - 0.05	0.02 - 0.06	0.02 - 0.08	0.03 - 0.9	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-50								
N	N1 Деформирумые алюминиевые сплавы	60-100	600-800	Fz min - max	0.01 - 0.05	0.02 - 0.06	0.02 - 0.08	0.03 - 0.9	0.04 - 0.11	0.05 - 0.13	
	N2 Литейные алюминиевые сплавы. <12% Si	75-90	600-800								
	N3 Литейные алюминиевые сплавы. >12% Si	90-130	400-450								0.05 - 0.17
	N4 Свинцовая бронза, латунь, медные сплавы	90-110	500-550								
	N5 Электролитная медь	100	350-380								

Концевые фрезы для обработки закалённой стали

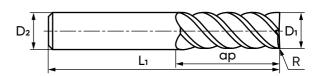
Серия Н501



Артикул	D1, мм	ар, мм	L1, MM	D ₂ , мм	D3, мм	L2, MM	Z	R
H501E04050-6C04	4	4	50	4	3,9	10	6	
H501E04050-6C04R01	4	4	50	4	3,9	10	6	0,1
H501E05050-6C05	5	5	50	5	4,9	12	6	
H501E05050-6C05R01	5	5	50	5	4,9	12	6	0,1
H501E06060-6C06	6	9	60	6	5,85	14	6	
H501E06060-6C06R015	6	9	60	6	5,85	14	6	0,15
H501E08063-6C08	8	12	63	8	7,85	20	6	
H501E08063-6C08R02	8	12	63	8	7,85	20	6	0,2
H501E10072-6C10	10	15	72	10	9,7	25	6	
H501E10072-6C10R02	10	15	72	10	9,7	25	6	0,2
H501E12073-6C12	12	18	73	12	11,7	30	6	
H501E12073-6C12R02	12	18	73	12	11,7	30	6	0,2
H501E14083-6C14	14	21	83	14	13,5	35	6	
H501E14083-4C14R025	14	21	83	14	13,5	35	4	0,25
H501E16092-6C16	16	24	92	16	15,4	40	6	
H501E16092-6C16R03	16	24	92	16	15,4	40	6	0,3

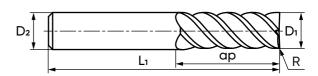
Концевые фрезы для обработки закалённой стали

Серия Н502



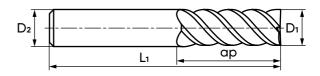
Артикул	D ₁ , мм	ар, мм	L1, MM	D2, мм	Z	R
H502F02050-4C04	2	5	50	4	4	
H502F03050-6C06	3	8	50	6	6	
H502F03050-6C06R01	3	8	50	6	6	0,1
H502F04050-6C06	4	10	50	6	6	
H502F04050-6C06R01	4	10	50	6	6	0,1
H502F05050-6C06	5	12	50	6	6	
H502F05050-6C06R01	5	12	50	6	6	0,1
H502F06060-6C06	6	14	60	6	6	
H502F06060-6C06R015	6	14	60	6	6	0,15
H502F08063-6C08	8	20	63	8	6	
H502F08063-6C08R02	8	20	63	8	6	0,2
H502F10072-6C10	10	23	72	10	6	
H502F10072-6C10R02	10	23	72	10	6	0,2
H502F12073-6C12	12	26	73	12	6	
H502F12073-6C12R02	12	26	73	12	6	0,2
H502F14083-6C14	14	30	83	14	6	
H502F14083-6C14R025	14	30	83	14	6	0,25
H502F16092-6C16	16	35	92	16	6	
H502F16092-6C16R03	16	35	92	16	6	0,3
H502F180100-6C18	18	40	100	18	6	
H502F180100-6C18R035	18	40	100	18	6	0,35
H502F200104-6C20	20	45	104	20	6	
H502F200104-6C20R035	20	45	104	20	6	0,35

Серия Н503



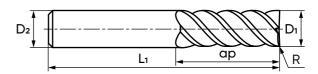
Артикул	D1, мм	ар, мм	L1, MM	О₂, мм	Z	R
H503F02050-4C04	2	8	50	4	4	
H503F03060-6C06	3	12	60	6	6	
H503F03060-6C06R01	3	12	60	6	6	0,1
H503F04060-6C06	4	16	60	6	6	
H503F04060-6C06R01	4	16	60	6	6	0,1
H503F05060-6C06	5	20	60	6	6	
H503F05060-6C06R01	5	20	60	6	6	0,1
H503F06068-6C06	6	24	68	6	6	
H503F06068-6C06R015	6	24	68	6	6	0,15
H503F08075-6C08	8	28	75	8	6	
H503F08075-6C08R02	8	28	75	8	6	0,2
H503F10081-6C10	10	35	81	10	6	
H503F10081-6C10R02	10	35	81	10	6	0,2
H503F12083-6C12	12	36	83	12	6	
H503F12083-6C12R02	12	36	83	12	6	0,2
H503F140100-6C14	14	42	100	14	6	
H503F140100-6C14R025	14	42	100	14	6	0,25
H503F160108-6C16	16	48	108	16	6	
H503F160108-6C16R03	16	48	108	16	6	0,3
H503F180110-6C18	18	54	110	18	6	
H503F180110-6C18R035	18	54	110	18	6	0,35
H503F200126-6C20	20	60	126	20	6	
H503F200126-6C20R035	20	60	126	20	6	0,35

Серия Н508



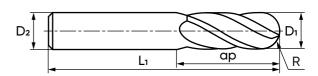
Артикул	D1, мм	ар, мм	L ₁ , MM	D2, MM	Z
H508F06060-6C06	6	13	60	6	6
H508F08063-8C08	8	19	63	8	8
H508F10072-10C10	10	22	72	10	10
H508F12073-12C12	12	26	73	12	12
H508F16092-16C16	16	32	92	16	16

Серия Н542



Артикул	D ₁ , мм	ар, мм	L1, мм	D ₂ , MM	Z	R
H542F03050-6C03R05	3	8	50	3	6	0,5
H542F04050-6C04R05	4	10	50	4	6	0,5
H542F05050-6C05R05	5	12	50	5	6	0,5
H542F06060-6C06R05	6	14	60	6	6	0,5
H542F06060-6C06R1	6	14	60	6	6	1
H542F06060-6C06R15	6	14	60	6	6	1,5
H542F06060-6C06R20	6	14	60	6	6	2
H542F08063-6C08R05	8	20	63	8	6	0,5
H542F08063-6C08R1	8	20	63	8	6	1
H542F08063-6C08R15	8	20	63	8	6	1,5
H542F08063-6C08R20	8	20	63	8	6	2
H542F10072-6C10R05	10	23	72	10	6	0,5
H542F10072-6C10R1	10	23	72	10	6	1
H542F10072-6C10R15	10	23	72	10	6	1,5
H542F10072-6C10R2	10	23	72	10	6	2
H542F10072-6C10R25	10	23	72	10	6	2,5
H542F10072-6C10R3	10	23	72	10	6	3
H542F12073-6C12R1	12	26	73	12	6	1
H542F12073-6C12R15	12	26	73	12	6	1,5
H542F12073-6C12R2	12	26	73	12	6	2
H542F12073-6C12R25	12	26	73	12	6	2,5
H542F12073-6C12R3	12	26	73	12	6	3
H542F16092-6C16R15	16	35	92	16	6	1,5
H542F16092-6C16R25	16	35	92	16	6	2,5
H542F16092-6C16R3	16	35	92	16	6	3
H542F16092-6C16R35	16	35	92	16	6	3,5
H542F200104-6C20R2	20	45	104	20	6	2
H542F200104-6C20R3	20	45	104	20	6	3
H542F200104-6C20R35	20	45	104	20	6	3,5
H542F200104-6C20R4	20	45	104	20	6	4

Серия Н572



Артикул	D1, мм	ар, мм	L ₁ , мм	D ₂ , mm	Z	R, мм
H572R02060-4C06	2	6	60	6	4	1
H572R02560-4C06	2,5	7	60	6	4	1,25
H572R03060-4C06	3	8	60	6	4	1,5
H572R03560-4C06	3,5	8	60	6	4	1,75
H572R04060-4C06	4	8	60	6	4	2
H572R05060-4C06	5	12	60	6	4	2,5
H572R05068-4C06	5	12	68	6	4	2,5
H572R050105-4C06	5	12	105	6	4	2,5
H572R06060-4C06	6	12	60	6	4	3
H572R06068-4C06	6	12	68	6	4	3
H572R060105-4C06	6	12	105	6	4	3
H572R07063-4C08	7	14	63	8	4	3,5
H572R07075-4C08	7	14	75	8	4	3,5
H572R070105-4C08	7	14	105	8	4	3,5
H572R08063-4C08	8	14	63	8	4	4
H572R08075-4C08	8	14	75	8	4	4
H572R08105-4C08	8	14	105	8	4	4
H572R09072-4C10	9	18	72	10	4	4,5
H572R09081-4C10	9	18	81	10	4	4,5
H572R090110-4C10	9	18	110	10	4	4,5
H572R090150-4C10	9	18	150	10	4	4,5
H572R10072-4C10	10	18	72	10	4	5
H572R10081-4C10	10	18	81	10	4	5
H572R100110-4C10	10	18	110	10	4	5
H572R100150-4C10	10	18	150	10	4	5
H572R12073-4C12	12	22	73	12	4	6
H572R12083-4C12	12	22	83	12	4	6
H572R120110-4C12	12	22	110	12	4	6
H572R120150-4C12	12	22	150	12	4	6
H572R14083-4C14	14	25	83	14	4	7

Продолжение на следующей странице

Серия Н572

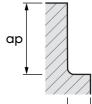
Артикул	D1, мм	ар, мм	L ₁ , MM	D ₂ , MM	Z	R, мм
H572R140100-4C14	14	25	100	14	4	7
H572R140150-4C14	14	25	150	14	4	7
H572R16092-4C16	16	30	92	16	4	8
H572R160108-4C16	16	30	108	16	4	8
H572R160150-4C16	16	30	150	16	4	8
H572R180100-4C18	18	34	100	18	4	9
H572R180110-4C18	18	34	110	18	4	9
H572R180150-4C18	18	34	150	18	4	9
H572R200104-4C20	20	38	104	20	4	10
H572R200126-4C20	20	38	126	20	4	10
H572R200150-4C20	20	38	150	20	4	10

H501, H502, H503, H508, H542

ISO	Группы обрабатываемого материала	НВ	Vc м/мин		Ø2-3	Ø4	Ø6	Ø8	Ø10	Ø12-14	Ø16	Ø18-20
	РЗ Легированная сталь	250	120-280									
Р	Р4 Легированная сталь закаленная- отпущенная	424	70-200	Fz min-	0.015 -	0.03 -	0.03 -	0.04 -	0.05 -	0.06 -	0.06 -	0.07 -
F	Р5 Высоколегированная сталь	240	110-280	max	0.035	0.07	0.07	0.09	0.10	0.11	0.13	0.17
	Р6 Высоколегированная сталь закаленная - отпущенная	424	70-140									
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240									
K	К2 Серый чугун	180	130-240	Fz min- max	0.015 - 0.035	0.03 - 0.07	0.03 - 0.07	0.04 - 0.09	0.05 - 0.10	0.06 - 0.11	0.06 - 0.13	0.07 - 0.17
	КЗ Чугун с шаровидным графитом	250	120-240									
	Н1 Закаленная сталь	550	40-200									
н	Н2 Закаленная сталь	may 0.035	Fz min-	0.015 -	0.03 -	0.03 -	0.04 -	0.05 -	0.06 -	0.06 -	0.07 -	
П	НЗ Отбеленный чугун					0.10	0.11	0.13	0.17			
	Н4 Закаленный чугун	550	40-140									

H501, H502, H503, H508, H542, обработка уступа получистовая

	_ , ,							Проце	нт пере	крытия с	ae		
ISO	Группы обрабатываемого материала	НВ	Vc м/мин			Ø2-3			Ø4			Ø6	
	·				5%	10%	20%	5%	10%	20%	5%	10%	20%
	РЗ Легированная сталь	250	120-280										
Р	Р4 Легированная сталь закаленная- отпущенная	360	70-200	Fz min-	0.035 -	0.026 -	0.02 -	0.04 -	0.03 -	0.025 -	0.045 -	0.04 -	0.03 -
Г	Р5 Высоколегированная сталь	240	110-280	max	0.08	0.06 0.036		0.12	0.09	0.064	0.16	0.12	0.09
	Р6 Высоколегированная сталь закаленная – отпущенная	380	70-140										
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240										
K	К2 Серый чугун	180	130-240	Fz min- max	0.035 - 0.08	0.026 - 0.06	0.02 - 0.036	0.04 - 0.12	0.03 - 0.09	0.025 - 0.064		0.04 -	0.03 - 0.09
	КЗ Чугун с шаровидным графитом	250	120-240										
	Н1 Закаленная сталь	550	50-200										
Н	Н2 Закаленная сталь	630	50-170	12 111111 0.033 0.020		0.026 -	0.02 -	0.04 -	0.03 -	0.025 -	0.045 -	0.04 -	0.03 -
17	НЗ Отбеленный чугун	400	50-150	max	0.08		0.036 0.12	.036 0.12	0.09	0.064	0.16	0.12	0.09
	Н4 Закаленный чугун	550	50-140										


H501, H502, H503, H508, H542, обработка уступа получистовая

							Процен	т перекр	ытия ае								
Группы		Ø8			Ø10			Ø12-14			Ø16			Ø18-20			
	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%		
P3																	
P4	0.065 -	0.05 -	0.04 -	0.072 -	0.05 -	0.04 -	0.075 -	0.05 -	0.04 -	0.12 -	0.08 -	0.04 -	0.12 -	0.09 -	0.06 -		
P5	0.2	0.15	0.12	0.25	0.17	0.13	0.23	0.18	0.13	0.03	0.17	0.12	0.39	0.28	0.13		
P6																	
K1																	
K2	0.065 - 0.2	0.05 - 0.15	0.04 - 0.12	0.072 - 0.25	0.05 - 0.17	0.04 - 0.13	0.075 - 0.23	0.05 - 0.18	0.04 - 0.13	0.12 - 0.03	0.08 - 0.17	0.04 - 0.12	0.12 - 0.39	0.09 - 0.28	0.06 - 0.13		
К3																	
H1																	
H2	0.065 -	0.05 -	0.04 -	0.072 -	0.05 -	0.04 -	0.075 -	0.05 -	0.04 -	0.12 -	0.08 -	0.04 -	0.12 -	0.09 -	0.06 -		
НЗ	0.2		0.12	0.25	0.17	0.13	0.23	0.18	0.13	0.03	0.17	0.12	0.39	0.28	0.13		
H4																	

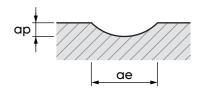
При получистовой обработке с шириной перекрытия ае 5 - 10% для групп материалов Р1-4 М1-2 К диаметры инструмента от 8 до 20 мм. Рекомендуем производить фрезеровку на всю длину режущей части при условии использывания следующих патронов:

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

Для высоколегированных, легированных закаленных - отпущенных и аустенитных нержавеющих сталей глубина фрезерования 1.5D и ширина ае не больше 20% от диаметра.

H572

ISO	Группы обрабатываемогого материала	НВ	Vc м/мин		Ø2	Ø4	Ø6	Ø8	Ø10	Ø12	Ø14	Ø16	Ø18	Ø20
	Р1 Конструкционная сталь	120	180-270											
	Р2 Низколегированная сталь	270	160-220											
	РЗ Легированная сталь	250	140-180											
Р	Р4 Легированная сталь закаленная- отпущенная	424	130-180	Fz min- max	0.012 - 0.04	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.044 - 0.12	0.05 - 0.13	0.05 - 0.15	0.05 - 0.17
	Р5 Высоколегированная сталь	240	130-190											
	Р6 Высоколегированная сталь закаленная - отпущенная	424	70-120											
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240											
K	К2 Серый чугун	180	130-240	Fz min- max	0.012 - 0.04	0.02 -	0.03 - 0.07	0.03 -	0.04 - 0.10	0.04 -	0.044 - 0.12	0.05 - 0.13	0.05 - 0.15	0.05 - 0.17
	КЗ Чугун с шаровидным графитом	250	120-240		0.04	0.05	0.07	0.09						
	Н1 Закаленная сталь	550	40-200											
Н	Н2 Закаленная сталь	630	30-170	may 0.0/2 0.02	nin- 0.012 -	0.02 -	0.03 -	0.03 -	0.04 -	0.04 -	0.044 -	0.05 -	0.05 -	0.05 -
П	НЗ Отбеленный чугун	400	40-200					0.13 0.15	0.17					
	Н4 Закаленный чугун	акаленный чугун 550 40-180												


H572

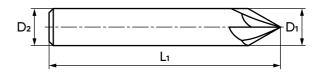
ISO	Группы обрабатываемого материала	НВ	Vc м/мин	ae	ap	Ø2	Ø4	Ø6	Ø8	Ø10	Ø12	Ø14	Ø16	Ø18	Ø20
	РЗ Легированная сталь	250	190			0.057	0.12	0.17	0.18	0.19	0.2	0.22	0.23	0.25	0.26
Р	Р4 Легированная сталь закаленная- отпущенная	424	170	0.050	0.020	0.045	0.1	0.15	0.155	0.165	0.17	0.172	0.175	0.177	0.178
'	Р5 Высоколегированная сталь	240	190	0.05D	0.02D	0.05	0.12	0.16	0.17	0.18	0.19	0.192	0.196	0.198	0.199
	Р6 Высоколегированная сталь закаленная – отпущенная	424	160			0.045	0.1	0.15	0.15	0.165	0.17	0.172	0.175	0.177	0.178
	К1 Ковкий чугун, Высокопрочный чугун	230	220												
K	К2 Серый чугун	180	220	0.05D	0.02D	0.055	0.12	0.17	0.18	0.19	0.2	0.22	0.23	0.25	0.26
	КЗ Чугун с шаровидным графитом	250	220												
	Н1 Закаленная сталь	550	160			0.042	0.08	0.12	0.12	0.15	0.16	0.162	0.166	0.168	0.169
Н	Н2 Закаленная сталь	630	190	0.050	0.025	0.04	0.7	0.1	0.11	0.13	0.13	0.132	0.134	0.134	0.135
П	НЗ Отбеленный чугун	400	200	0.05D (0.05	0.11	0.15	0.15	0.16	0.17	0.172	0.174	0.176	0.176
	Н4 Закаленный чугун	550	180			0.05	0.1	0.14	0.14	0.15	0.16	0.162	0.164	0.166	0.167

При фрезерованиии в полный паз не использовать цанговые патроны типа ER. Также нужно обратить внимание на жесткость крепления детали и жесткость самого станка.

- термопатроны;
- силовые патроны (цанговые патроны с повышенным усилием зажатия фрезы);
- гидропластовые патроны.

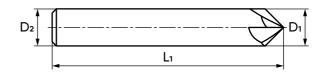
Фасонные концевые фрезы универсального применения

Серия G40



Артикул	D1, мм	L1, MM	D ₂ , MM	Z
G40C06057-4C04A60	6	57	6	4
G40C08063-4C08A60	8	63	8	4
G40C10072-4C10A60	10	72	10	4
G40C12083-4C12A60	12	83	12	4

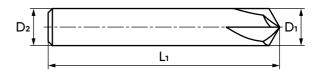
Серия G41



Артикул	D1, мм	L ₁ , MM	D ₂ , MM	Z
G41C04057-4C04A90	4	57	4	4
G41C06057-4C06A90	6	57	6	4
G41C08063-4C08A90	8	63	8	4
G41C10072-4C10A90	10	72	10	4
G41C12083-4C12A90	12	83	12	4
G41C16092-4C16A90	16	92	16	4
G41C200104-4C20A90	20	104	20	4

Фасонные концевые фрезы универсального применения

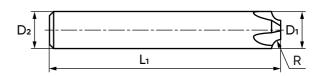
Серия G42



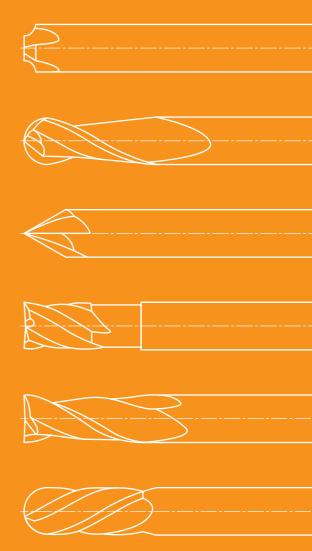
Артикул	D1, мм	L ₁ , MM	D ₂ , MM	Z
G42C06057-4C06A120	6	57	6	4
G42C08063-4C08A120		63	8	4
G42C10072-4C10A120	10	72	10	4
G42C12083-4C12A120	12	83	12	4

Фасонные концевые фрезы универсального применениям

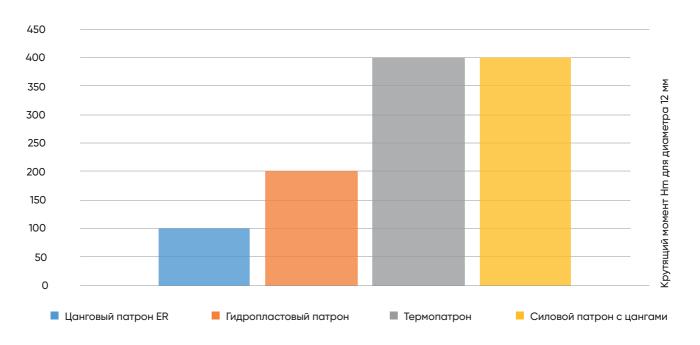
Серия G43



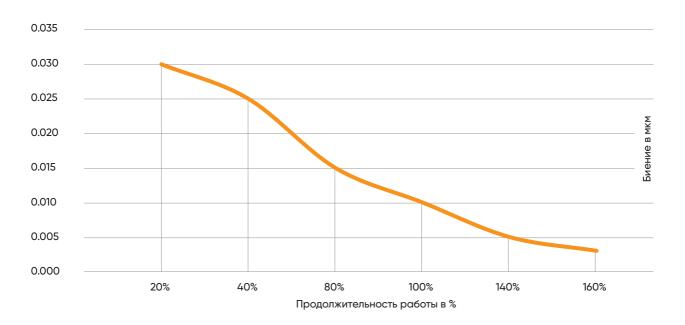
Артикул	D1, мм	L ₁ , MM	D ₂ , MM	Z	R
G43S06057-4C06R05	6	57	6	4	0,5
G43S06057-4C06R08	6	57	6	4	0,8
G43S08063-4C08R1	8	63	8	4	1
G43S08063-4C08R15	8	63	8	4	1,5
G43S10072-4C10R2	10	72	10	4	2
G43S10072-4C10R25	10	72	10	4	2,5
G43S12083-4C12R3	12	83	12	4	3
G43S14083-4C14R4	14	83	14	4	4
G43S16092-4C16R5	16	92	16	4	5
G43S200104-4C20R6	20	104	20	4	6


G40, G41, G42, G43

ISO	Группы обрабатываемогого материала	НВ	Vc м/мин		Ø4	Ø6	Ø8	Ø10	Ø12	Ø16	Ø20
	Р1 Конструкционная сталь	120	180-270		0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
	Р2 Низколегированная сталь	270	160-220								
	РЗ Легированная сталь	250	140-180								
Р	Р4 Легированная сталь закаленная - отпущенная	424	130-180	Fz min- max							
	Р5 Высоколегированная сталь	240	130-180								
	Р6 Высоколегированная сталь закаленная – отпущенная	424	70-120								
	М1 Нержавеющая сталь феритная - мартенситная	200	80-160	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
М	M2 Нержавеющая сталь мартенситная	240	60-150								
	МЗ Нержавеющая сталь аустенитная	180	60-120								
	К1 Ковкий чугун, Высокопрочный чугун	230	140-240	Fz min- 0.02 - max 0.05			0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
K	К2 Серый чугун	180	130-240								
	КЗ Чугун с шаровидным графитом	250	120-240								
	S1 Жаропрочные сплавы на основе железа	200	20-40	Fz min- max	0.02 - 0.05	0.03 - 0.07	0.03 - 0.09	0.04 - 0.10	0.04 - 0.11	0.05 - 0.13	0.05 - 0.17
S	S2 Жаропрочные сплавы на основе никеля	350	20-30								
	S3 Титан и титановые сплавы	110	30-80								
	S4 Титан и титановые сплавы Alpha+beta сплавы	310	30-80								


ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Концевые фрезы



Справочная информация

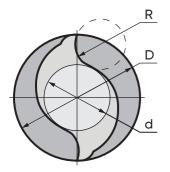
Усилия зажатия инструмента в зависимости от типа патрона

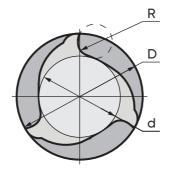
Влияние биения на стойкость

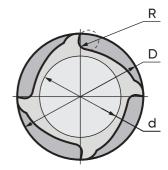
0,01 биение стандартной ЕР цанги взята за базу стойкости 100%

0,005 биение ER цанги повышенной точности

0,003 биение гидропластого патрона

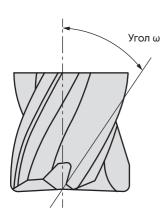

0,015 до 0,025 биение цанг по DIN6499


0,015-0,03 биение патронов типа weldon



Характеристики монолитных фрез:

Число зубьев

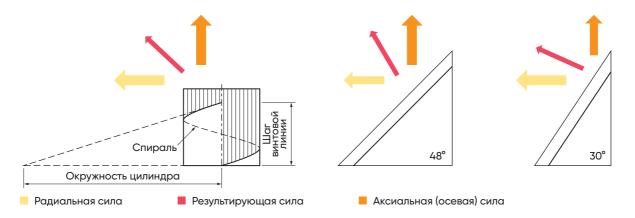


R - условный радиус стружечной канавки D - диаметр фрезы d - диаметр сердцевины

Чем больше число зубьев, тем жестче режущий инструмент. Это происходит за счет увеличения диаметра сердцевины. Большое количество зубьев позволяет работать на больших подачах и равномерно распределять нагрузку. При большем количестве зубьев стружечные канавки уменьшаются, что затрудняет отвод стружки.

Количество зубьев Z ≤ 4	Количество зубьев Z ≥ 5
Материалы с длиной стружкой	Небольшое ае (ширина фрезерования)
Алюминиевые сплавы	Трохоидальное фрезерование
Операции с большим ае (ширина фрезерования)	Чистовые операции
≥0.25xØ – полный паз	Стабильные условия
Нестабильные условия	Жесткость системы
Большой вылет инструмента	Большой момент зажима
Биение шпинделя	Небольшой вылет инструмента
Слабый зажим	Чугун
	Закаленные стали

Угол наклона винтовой канавки


Концевые фрезы имеют углы наклона винтовой канавки от 0° до 60°. Стандартные концевые фрезы компании Микробор от 30° до 48°.

Величина угла наклона винтовой канавки влияет на распределение сил резания, а так же на процесс эвакуации стружки из зоны резания.

Угол ω – угол винтовой канавки.

Характеристики монолитных фрез:

Большой угол наклона винтовой канавки (35°-50°)

Низкая радиальная составляющая силы резания (не отжимает)

Низкие усилия на тонких стенках

Возможность изготовления удлиненных серий фрез

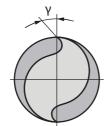
Требуется высокое усилие зажима инструмента (фрезу может «вытягивать» из оправки)

Низкие вибрации

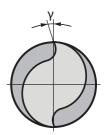
Маленький угол наклона винтовой канавки (0°-35°)

Низкая осевая составляющая силы резания

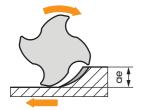
Низкие усилия на тонких торцах (обработка листового материала)

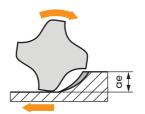

Для мягких материалов

Для материалов с длиной стружкой

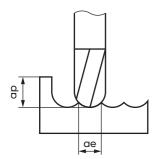

Передний угол

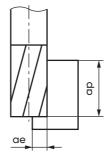
Передний угол инструмента играет важную роль в процессе отделения стружки. В зависимости от области применения фрезы исполнение переднего угла может отличаться. Так на фрезах для мягких материалов делается большой передний угол, обеспечивающий отделение стружки от обрабатываемого материала с минимальными усилиями резания. Для фрез, работающих по закаленным материалам делается или минимальный, или вообще отрицательный передний угол, для обеспечения максимальной прочности режущей кромки.

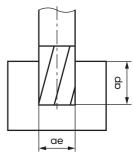




Параметры резания


- Низкие усилие резания
- Фрезы для алюминия





- Высокое усилие резания
- Фрезы для закаленных материалов и чугуна

Глубина резания ар (t) и ширина фрезерования ае (B)

Профильное фрезерование

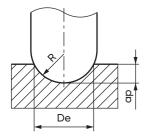
Фрезерование уступов

Фрезерование пазов

Подача

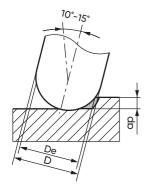
При фрезеровании различают подачу на зуб Fz, подачу на оборот Fn и минутную подачу Vf, которые определяются как:

		Vf - минутная подача (мм/мин)	
	$Vf = Fz \times n \times Z$	Fn = Fz × Z	Fz - подача на зуб (мм/зуб)
VI = FZ ^ II ^ Z	111 – 1 2 ^ 2	n - частота вращения (об/мин)	
			Z - число зубьев


Исходной величиной подачи при фрезеровании является подача на зуб.

Скорость резания и частота вращения шпинделя

Параметры резания


Фрезерование фасонных поверхностей радиусными сферическими фрезами

При фрезеровании фасонных поверхностей основным параметром при расчёте скорости резания будет являться эффективный диаметр фрезерования.

De =
$$2 \times \sqrt{R^2 - (R - ap)^2}$$
 $R - paguyc фрезы (мм)$
 $R - paguyc фрезы (мм)$
 $R - paguyc фрезы (мм)$

При этом скорость резания теперь будет: $V_C = \frac{\pi \times De \times n}{1000} (M/MUH)$

При работе сферическими фрезами скорость резания около центра фрезы близка к нулю. Также затруднено удаление стружки.

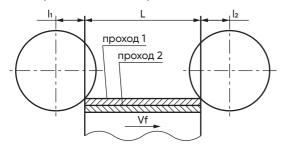
В связи с этим рекомендуется обработка с наклоном шпинделя или заготовки на 10° - 15° .

Скорость резания при этом необходимо рассчитывать с учётом эффективного диаметра фрезы De.

Объём удалённого материала

Объём удалённого материала равен разнице объемов заготовки и готовой детали. Объём можно рассчитать по формуле:

$$Q = \frac{ap \times ae \times Vf}{1000} (cm^3/мин)$$


$$Vf - минутная подача (мм/мин)$$

$$ap - глубина резания (мм)$$

$$ae - ширина фрезерования (мм)$$

Основное машинное время

Основное время при фрезеровании равно отношению длины пути к значению минутной подачи пройденного фрезой за определённое число проходов.

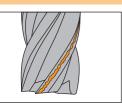
То =
$$\frac{L \times |_1 + |_2}{Vf} \times i$$
 (мин)

| 1 - величина врезания фрезы (мм) | 12 - величина перебега фрезы (мм) | 12 - величина перебега фрезы (мм) | 13 - число проходов | 14 - число проходов | 15 - число проходов | 16 - число проходов | 17 - число проходов | 17 - число проходов | 18 -

Рекомендации по устранению различных видов преждевременного износа

Вид Причина Решение

Сколы на углах


Высокая подача (большая нагрузка на зуб)
Слишком острая геометрия
Низкая жесткость системы

Увеличить скорость резания
Использовать фрезу с фаской или скруглённой кромкой

Боковой износ на задней поверхности

Прерывистое резание

Большой вылет инструмента

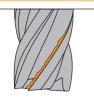
Слишком высокая температура в зоне резания

Слишком низкая подача на зуб

Маленький угол затыловки инструмента

Недостаточное охлаждение

Понизить скорость резания


Увеличить подачу

Обеспечить более интенсивный подвод СОЖ (проверить концентрацию СОЖ)

Проверить надежность закрепления

Уменьшить вылет инструмента

Наростообразование на фрезе

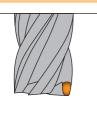
Низкая скорость резания

Низкая подача на зуб

Химическая реакция покрытия с заготовкой

Недостаточно охлаждения

Передний угол не соответствует обрабатываемому материалу


Увеличить скорость резания

Проверить износ фрезы

Обеспечить более интенсивный подвод СОЖ (проверить концентрацию СОЖ)

Использовать фрезы с дугой геометрией

Лункообразование на кромке

Слишком высокая скорость резания

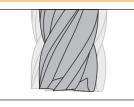
Низкая подача на зуб

Большой задний угол заточки

Наростообразование

Уменьшить скорость резания

Увеличить подачу


Обеспечить более интенсивный подвод СОЖ (проверить концентрацию СОЖ)

Выбрать фрезу с меньшим задним углом заточки

Рекомендации по устранению различных видов преждевременного износа

Причина	Решение						
Выкрашивания на кромке							
Слишком высокая скорость резания	Уменьшить скорость резания						
Низкая жесткость системы	Проверить закрепление инструмента						
Высокие вибрации	Уменьшить вылет инструмента						
Слишком высокая подача на зуб	Уменьшить подачу						
Неправильно подобран инструмент	Использовать другую геометрию фрезы						
	Проверить материал заготовки						
	Слишком высокая скорость резания Низкая жесткость системы Высокие вибрации Слишком высокая подача на зуб						

Вибрации

Слишком высокая скорость резания

Низкая жесткость системы

Неправильно подобраны режимы
(инструмент не режет, а давит)

Неправильно подобран инструмент

Уменьшить скорость резания
Проверить закрепление инструмента
Уменьшить вылет инструмента
Выбрать максимально возможный диаметр

инструмента, с прочной сердцевиной

Для заметок

Для заметок

ООО «СИЭНСИЭМ Груп» является официальным дилером компании «Микробор Композит» на территории РФ. Алтайский край, г. Барнаул, ул. Балтийская, 24

www.cncmagazine.ru sales@cncmagazine.ru 8 (800) 555 41 16 Звонки по РФ бесплатно

